Security Audit Report

ClickPesa Oracle Aggregator sei.

Delivered: February 20, 2025

Prepared for ClickPesa Debt Fund by

runtime
verification

1721


https://runtimeverification.com/
https://runtimeverification.com/

Table of Contents

¢ Disclaimer

e Executive Summary

e Goal

e Scope

+ Methodology

e Platform Logic and Features Description
e Oracle Aggregator

¢ |nvariants
e Findings
¢ [Al] The Oracle Aggregator Can Be Hijacked By Third-Parties
e Description
e Scenario
¢ Recommendation
e Status

» [A2] The Oracle Aggregator Performs Calls to Contracts That Can Be Updated Whilst
Itself Cannot
¢ Description
¢ Recommendation
e Status

¢ Informative Findings
» [B1] Best Practices and Notable Particularities
» [B2] ClickPesa's Oracle Aggregator Reliance on USDC Price
¢ Description
¢ Recommendation
e Status

2/21



Disclaimer

This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided by you or is otherwise publicly
available, there are likely additional unknown risks which otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of
this system. This report is for informational purposes only and is provided on an "as-is" basis
and you acknowledge and agree that you are making use of this report and the information
contained herein at your own risk. The preparers of this report make no representations or
warranties of any kind, either express or implied, regarding the information in or the use of this
report and shall not be liable to you or any third parties for any acts or omissions undertaken by
you or any third parties based on the information contained herein.

Smart contracts are still a nascent software arena, and their deployment and public offering
carries substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large quantity
of funds.

3/21



Executive Summary

ClickPesa Debt Fund, also referred to in this report as, simply, ClickPesa, engaged Runtime
Verification Inc. to conduct a security audit of the Oracle contract code. The objective was to
review the platform’s business logic and implementation in Rust (Soroban) and identify any
issues that could cause the system to malfunction or be exploited.

The audit was conducted over two calendar weeks (November 18, 2024, through December 2,
2024) and focused on analyzing the security of the source code of ClickPesa's Oracle. This
oracle enables users and other protocols/contracts to fetch the exchange rate of ClickPesa's
liquidity token. The primary user of this oracle is designed to be a Blend liquidity pool.

The audit led to identifying issues of potential severity for the protocol’s health, which have been
identified as follows:

e Third-party code execution: [A1] The Oracle Aggregator Can Be Hijacked By Third-Parties,
[A2] The Oracle Aggregator Performs Calls to Contracts That Can Be Updated Whilst Itself
Cannot;

« Potential threats to users' fund integrity: [A1] The Oracle Aggregator Can Be Hijacked By
Third-Parties, [A2] The Oracle Aggregator Performs Calls to Contracts That Can Be
Updated Whilst Itself Cannot, [B2] ClickPesa's Oracle Aggregator Reliance on USDC Price.

In addition, several informative findings and general recommendations also have been made,
including:
+ Best practices and code optimization-related particularities: [B1] Best Practices and
Notable Particularities;
» Notes on potential economic risks: [B2] ClickPesa's Oracle Aggregator Reliance on USDC
Price;
¢ Blockchain-related particularities: [B1] Best Practices and Notable Particularities.

The client has acknowledged all of the reported findings. When not intended by design
according to the contract's business logic, the findings themselves will be addressed in a newer
version of the audited contract that is currently in development.

4/21


https://clickpesadebtfund.com/
https://runtimeverification.com/
https://runtimeverification.com/

Goal

The goal of the audit is threefold:

* Review the high-level business logic (protocol design) of ClickPesa's system based on the
provided documentation and code;
+ Review the low-level implementation of the system for the individual Soroban smart

contract (Oracle);
* Analyze the integration between abstractions of the modules interacting with the contract in
the scope of the engagement and reason about possible exploitive corner cases.

The audit focuses on identifying issues in the system'’s logic and implementation that could
potentially render the system vulnerable to attacks or cause it to malfunction. Furthermore, the
audit highlights informative findings that could be used to improve the safety and efficiency of
the implementation.

5/21



Scope

The scope of the audit is limited to the code contained in a public Github repository provided by
the client (ClickPesa-Debt-Fund/oracle-aggregator). Within the repository and among other files,
a contract is highlighted as in the scope of the engagement. The repository and contract are
described below:

1. oracle-aggregator: The files that compose this repository were forked by the client,
ClickPesa Debt Fund, which has been originally forked this repo from Blend Capital's
original source. From it, a single contract was audited:

e Oracle (main file src/contract.rs, commitid
e57d0607f793a0927fc7df7déca7bedabcc1b83d , branch main ): implements the core
of the protocol, handling requests for the oracle information as well as prices for
specific assets;

The comments provided in the code, a general description of the project, including samples of
tests used for interacting with the platform, and online documentation provided by the client
were used as reference material.

The audit is limited in scope to the artifacts listed above. Off-chain, auto-generated, or client-
side portions of the codebase, as well as deployment and upgrade scripts, are not in the scope
of this engagement.

Commits addressing the findings presented in this report have also been analyzed to ensure the
resolution of potential issues in the protocol.

6/21


https://github.com/ClickPesa-Debt-Fund/oracle-aggregator
https://github.com/ClickPesa-Debt-Fund/oracle-aggregator
https://clickpesadebtfund.com/
https://github.com/blend-capital/oracle-aggregator
https://github.com/blend-capital/oracle-aggregator

Methodology

Although the manual code review cannot guarantee to find all possible security vulnerabilities as
mentioned in our Disclaimer, we have followed the approaches described below to make our
audit as thorough as possible.

First, we rigorously reasoned about the business logic of the code, validating security-critical
properties to ensure the absence of loopholes in the business logic. To this end, we carefully
analyzed all the proposed features of the platform and the actors involved in the lifetime of
deployed instances of the audited contracts.

Second, we thoroughly reviewed the contracts' source code to detect any unexpected (and
possibly exploitable) behaviors. To facilitate our understanding of the platform’s behavior,
higher-level representations of the Rust codebase were created, where the most
comprehensive were:

* Modeled sequences of logical operations, considering the limitations enforced by the
identified invariants, checking if all desired properties hold for any possible input value;

+ Manually built high-level function call maps, aiding the comprehension of the code and
organization of the protocol's verification process;

* Made use of static analyzers such as Scout to identify commonly identifiable issues;

» Created abstractions of the elements outside of the scope of this audit to build a complete
picture of the protocol's business logic in action.

This approach enabled us to systematically check consistency between the logic and the
provided Soroban Rust implementation of the system.

Furthermore, once the creation of higher-level abstractions and the process of understanding
contracts was complete, attempts to use the protocol's business logic to break the collected
invariants were performed, resulting in some of the findings presented in this report.

Finally, we conducted rounds of internal discussions with security experts over the code and
platform design, aiming to verify possible exploitation vectors and identify improvements for the
analyzed contracts. As an outcome of these research sessions and discussions, code
optimizations have also been discovered.

Additionally, given the nascent Stellar-Soroban development and auditing community, we
reviewed this list of known Ethereum security vulnerabilities and attack vectors and checked

7/21


https://www.coinfabrik.com/products/scout/
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities

whether they apply to the smart contracts and scripts; if they apply, we checked whether the
code is vulnerable to them.

8/21



Platform Logic and Features Description

The ClickPesa Debt Fund empowers global investors to align their investments with positive
social change. By funding local businesses, they can generate financial returns while driving
sustainable growth.

ClickPesa's strategy involves collaborating with experienced Microfinance Institutions (MFIs)
with a strong presence in Africa. These MFIs are well-equipped to support Small and Medium
Enterprises (SMEs), especially women-owned SMEs. By partnering with these MFIs, ClickPesa
aims to reach and empower businesses across the continent.

ClickPesa enables its on-chain functionalities by establishing a Blend pool, where its proprietary
token, CPCT (ClickPesa Collateral Token), represents a tokenized version of Microfinance loan
books. These loan books consist of small loans provided to SMEs. Through agreements with
Microfinance institutions, ClickPesa secures full claims on these loan books. CPCT tokens are
issued to match the exact value of the loan book, representing this claim. ClickPesa then adds
CPCT tokens to the Blend pool as collateral and borrows USDC, which is channeled through
Microfinances to fund SME loans.

To ensure accurate on-chain pricing for CPCT, both for users and Blend pools, ClickPesa has
developed an oracle. In its current version, the oracle maintains a 1-to-1 price peg between
CPCT and USDC. The contract representing this oracle is the scope of this engagement.

Oracle Aggregator

Based on the Oracle Aggregator design provided by Blend (ref), ClickPesa's oracle was
designed to provide the price of assets through means of other oracles, registered in this
aggregator. This contract follows the Stellar Ecosystem Proposal 40 standard (SEP-0040).

Below is the function diagram of ClickPesa's oracle aggregator segregated by the contract
interface available to callers and its storage manipulating functions.

9/21


https://github.com/blend-capital/oracle-aggregator
https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0040.md

Oracle Aggregator

extend_instance()

Y

Y

get_is_init() -> bool

Oracle Aggregator

set_is_init()

Y

resolution() -= u32
get_assets() -> Vec<Assets

Y

price() -> Option<PriceData=

get_usdc() -> Address

Y

prices() -= Option=\ec<PriceData=>

set_usdc()

Y

base() -> Asset
get_cpyt() -» Address

Y

decimals() -= ud2

set_cpyl()

Y

assets() -= Vec<Assel>

set_base()

Y

lastprice(usdc, cpyt, oracle) -= Option<PriceData>
get_base() -> Asset

initialize(usdc_oracle, base, decimals)

set_decimals()

Y

get_decimals() -> u32

Y

set_oracle()

Y

» get_oracle() -= Address

Figure 1: Oracle aggregator function operations and storage diagram.
Of the functions available in this contract, resolution, price ,and prices panic if called.

base , decimals ,and assets return the storage values for the respective variables these
functions represent. base and decimals push the persistent storage variables' time-to-live,
while assets returns a vector containing the addresses of USDC and CPCT.

initialize is supposed to be called after the contract's deployment by its deployer. From its
parameters, it sets the addresses of USDC, CPCT, and the off-chain USDC oracle address and,
from the latter, instantiates a PriceFeed contract to fetch its price and decimals, setting its own
variables of the same name.

last_price is called when requesting the latest exchange rate of an asset supported by the
oracle. In this case, the only assets supported are USDC and CPCT. Given that CPCT is
pegged to the price of USDC, the returned value by 1last price is the return of a call for the
off-chain USDC oracle's last_price function.

10/21



Despite having a design of an oracle aggregator, it is important to highlight that ClickPesa's
oracle aggregator is hardcoded to support only one oracle, which is off-chain USDC. This is
done intentionally, given the purpose of this contract.

A Blend liquidity pool for ClickPesa is deployed and operational at the moment. Following the
onchain data of the oracle referenced by the aggregator, the address of the oracle contains
source code matching the implementation of reflector-network's oracle contract.

11/21


https://stellar.expert/explorer/public/contract/CAFJZQWSED6YAWZU3GWRTOCNPPCGBN32L7QV43XX5LZLFTK6JLN34DLN?filter=history
https://github.com/reflector-network/reflector-contract/blob/master/src/lib.rs

Invariants

During the audit, invariants have been defined and used to guide part of our search for possible
issues with ClickPesa's oracle aggregator. With the help of the client's documentation, intended
business logic, and references collected during the audit, the following invariants were
gathered:

« There should not be administrative representatives to the oracle;

¢ Once initiated, no storage value of the contract will be overridden;

e There should only be one source of values for this oracle;

¢ Only two assets are to be supported by this oracle: USDC, and CPCT;

While being the guiding points of the contract's security analysis, aspects outside of the scope
covered by the above invariants were investigated. Also, given the reliance of ClickPesa's
oracle aggregator on the USDC oracle, data availability and reliability were not a primary focus
of the investigation, although were considered as well during this engagement.

12/21



Findings
Findings presented in this section are issues that can cause the system to fail, malfunction,

and/or be exploited, and should be properly addressed.

All findings have a severity level and an execution difficulty level, ranging from low to high, as
well as categories in which it fits. For more information about the classifications of the findings,

refer to our Smart Contract Analysis page (adaptations performed where applicable).

13/21


https://runtimeverification.com/smartcontract-analysis

[A1l] The Oracle Aggregator Can Be Hijacked
By Third-Parties

Severity: High Difficulty: Medium Recommended Action: Fix Design Not addressed by client

Description

At the time of writing, Stellar-Soroban does not allow constructors into their contracts, meaning
that the deployment and initialization function calls will be submitted to the blockchain as two
different transactions.

This can be particularly dangerous if a malicious user becomes aware of the activities of an
account address used by the protocol admin(s), and attempts to intercept the initialization
transaction after the contract deployment. By controlling the contract initialization, the malicious
user is able to provide any address as the USDC oracle address which ClickPesa's contract
relies upon. This will result in calls to the 1last price function potentially executing malicious
code if the user replicates the interface of the USDC oracle.

Given that ClickPesa already has a pool in the Blend protocol which makes usage of a contract
with the same interface as the one being audited, which, in turn, points to the USDC oracle
intended to be used by the audited contract, potential attackers already have all the necessary
information to execute this attack, once ClickPesa's oracle aggregator is deployed.

Scenario

An attack by a malicious 3rd party can be, for instance:

1 - ClickPesa admin deploys an oracle aggregator contract for testing and initializes it (two
consecutive transactions);

2 - Malicious user collects information about the contract and its initialization;

3 - Malicious user starts to track activities of admin addresses on mainnet;

4 - ClickPesa admin deploys the oracle aggregator in mainnet;

5 - Malicious user front runs admin calling the initialization function, passing a personalized
contract with the same interface of the oracle supported by the contract in scope;

14/21



6 - The ClickPesa is now tied to a deployed oracle pointing to malicious code. Given its
interface, there is no way to modify the oracle to which this aggregator contract points.

Another possibility is that the admins may not link the oracle to the liquidity pools that they are
designed to be used, or may not publicize the address of their newly deployed oracle if they
notice that someone else initialized it in their place; this may lead to a denial of service/griefing
attack by the malicious user, where any deployment attempt coming from a known admin
address will be followed by an attempt of front running by the malicious user.

Recommendation

We highly recommend that the deployment and initialization of all contracts that require
initialization happen programmatically through a deployer smart contract
(https://soroban.stellar.org/docs/tutorials/deployer). This way, as we wait for constructors to be
introduced to Soroban, ClickPesa's team will have a way to deploy and initialize its oracle and
prevent scenarios similar to the above from happening.

Status

The client has acknowledged this finding, which will be addressed in a newer version of the
audited contracts that are currently in development.

15/21


https://soroban.stellar.org/docs/tutorials/deployer

[A2] The Oracle Aggregator Performs Calls
to Contracts That Can Be Updated Whilst
Itself Cannot

Severity: High (Difficulty: High) (Recommended Action: Fix Design) Not addressed by client

Description

Following the nature of Oracle Aggregator according to its intended design, each call requesting
the price of either USDC or CPCT will be forwarded to another oracle. Based on the design
analysis, provided documentation, and audit research, we believe that the implementation of
ClickPesa's Oracle Aggregator is not ideal when considering its integration with an oracle using
reflector-network’s oracle code. Of this oracle implementation, we note that it has two functions
in particular that we should highlight: config and update contract .

config will update the administrative and operational variables of the oracle (including admin ,
base , decimals ,and resolution ), and update contract will modify the contract code
stored in that address.

ClickPesa's Oracle Aggregator has no way of modifying its own storage variables after
initialization, meaning that any potential modification to the oracle that it points to will lead this
aggregator to display incorrect information to its users potentially. Furthermore, an additional
danger comes from the possibility of the oracle referenced by ClickPesa's aggregator being
hacked, leading to callers of ClickPesa's oracle aggregator to execute malicious code.

Recommendation

Support ways of modifying the oracle aggregator administrative variables, as well as updating
the contract and freezing its operations in case of any manifesting issue with the oracle
referenced by the audited contract.

Status

16/21


https://github.com/reflector-network/reflector-contract/blob/master/src/lib.rs

The client has acknowledged this finding, which will be addressed in a newer version of the
audited contracts that are currently in development.

17/21



Informative Findings

The findings presented in this section do not necessarily represent any flaw in the code itself.
However, they indicate areas where the code may need external support or deviate from best
practices. We have also included information on potential code size reductions and remarks on

the operational perspective of the contract.

18/21



[B1] Best Practices and Notable
Particularities

Severity: Informative Recommended Action: Fix Code Not addressed by client

Description

Here are some notes on the protocol particularities, comments, and suggestions to improve the
code or the business logic of the protocol in a best-practice sense. They do not in themselves
present issues to the audited protocol but are advised to either be aware of or to be followed
when possible, and may explain minor unexpected behaviors on the deployed project.

1. Soroban SDK version is outdated. The version used in the audited contract is 20.5.0;

2. In the initialization function, storage is modified, but no events announcing the storage
modification are broadcasted;

3. There are unwrap() operations in five different points of storage.rs . This function,
usually used for error handling, will call panic if an error occurs or if the value being
unwrapped is None without a custom panic message. There is no appropriate handling of
the potential panic this function can produce;

4. The documentation above initialize does not match the actual implementation of it;

5. Whenever storage is extended, it is extended by 31 days. The threshold is 30 days. This
can be taxing to the user that ends up extending the time-to-live of the contract storage,
and may lead to eventual contract archival due to the 1 day window in which the contract
can have its storage time extended,;

Recommendations

For each of the topics elaborated above, we recommend implementing the following
approaches into the protocol's contracts:

1. For security reasons, we should always use the latest Soroban SDK version (21.0.1);

2. Given that this is the single time the storage is modified and it is the contract initialization,
this is not perceived it as an issue, but still stands as a best practice recommendation;

3. We recommend validating that the item retrieved from storage can actually be unwrapped,
panicking if not, but with a proper informational error message;

19/21



4. Documentation should always reflect the code it is used to describe;
5. Alower threshold would be best to avoid the contract possibly expiring (for lack of use
within a single day) or a single user being taxed with a higher-cost transaction to restore

the full storage time. Perhaps explore using a 10 or 15 days threshold.

Status
The client has acknowledged this finding, which will be addressed in a newer version of the

audited contracts that are currently in development.

20/21



[B2] ClickPesa's Oracle Aggregator Reliance
on USDC Price

Severity: Informative (Recommended Action: Fix Design) Not addressed by client

Description

As discussed further in the Platform Logic and Features Description, the oracle aggregator is
designed to always provide the same price as CPCT and USDC. This is hard-coded into the
contract code; in other words, the operation of fetching prices for this asset is not parametric,
modifiable, or, in this specific case, different, regardless of which asset price is requested.

This implementation decision may have considerable impacts in case of a malfunction in the
business logic of any of the two tokens. For instance, if USDC depegs, the price of CPCT will be
modified accordingly, or if, for any reason, the pools that mint CPCT become insolvent and this
causes a modification in CPCT's market price, users can acquire this token to exchange for
USDC in any protocol reliant on ClickPesa's oracle aggregator, thus acquiring USDC as a
discount price.

Recommendation

Approaches to managing issues related to the above are not trivial, considering the design
choice of pegging CPCT's price to USDC. Still, in case such issues happen, we recommend
having approaches to halt the operation of the oracle to prevent the propagation of problems
originating from any potential price differences between the tokens (as suggested in finding [A2]
The Oracle Aggregator Performs Calls to Contracts That Can Be Updated Whilst Itself Cannot).

Status

The client has acknowledged this finding, which will be addressed in a newer version of the
audited contracts that are currently in development.

21/21



