
Security Audit Report

Kora Solana

Delivered: October 22rd, 2025

Prepared for Solana Foundation by

1/73

https://www.runtimeverification.com/
https://www.runtimeverification.com/

Table of Contents
Disclaimer
Executive Summary
Scope
Methodology
Overview
Critical Properties

Network Security
Private Key Security
Fees
Config and Transaction Validation
Caching
Possible Attack Vectors

Module Summaries
Fee Module (fee)

Data Structures
Fee Calculation Formula
Main Functions
Error Conditions
Interaction with Other Modules
Security Considerations
Properties and Invariants

RPC Server Module (rpc_server)
Data Structures
server Submodule
method Submodule

Interactions with Other Modules
Security Considerations
Properties and Invariants

Signer Module (signer)
Data Structures
Main Functions
Interactions with Other Modules
Security Considerations

Token Module (token)
Main Functions
Interactions with Other Modules
Security Considerations
Properties and Invariants

Transaction Module (transaction)
Data Structures
Main Functions

2/73

Error Conditions
Interaction with Other Modules
Security Considerations
Properties and Invariants

Validator Module (validator)
Data Structures
config_validator Submodule
account_validator Submodule
cache_validator Submodule
signer_validator Submodule
transaction_validator Submodule

Interaction with Other Modules
Security Considerations
Properties and Invariants

Other Modules
Admin Module (admin)
Cache Module (cache)
Config Module (config)
Metrics Module (metrics)
Oracle Module (oracle)
State Module (state)
Usage Limit Module (usage_limit)

Findings
[A01] Early return in initialize_atas_with_chunk_size() when an address has no ATAs to create

Recommendation
Status

[A02] process_token_transfer return values have conflicting meanings
Recommendation
Status

[A03] Payment instruction detection uses first-match logic instead of aggregation
[A04] Integer Overflow in Fee Aggregation
[A05] RustSec dependency vulnerabilities
[A06] Double counting of ATA rent fees during fee estimation

Recommendation
Status

[A07] Unsafe unwrap() calls in production code
Recommendation
Status

[A08] Fee payer policy is maximally permissive by default
Recommendation
Status

[A09] Fixed pricing model does not require user to pay back fee payer outflow
Recommendation

3/73

Status
[A10] SPL token transfers are not accounted for in fee payer outflow

Recommendation
Status

[A11] Access control missing for unsupported SPL instructions
[A12] Non-constant-time comparison of HMAC signatures
[A13] API key comparison vulnerable to timing attacks
[A14] Panic on invalid UTF-8 in HMAC authentication
[A15] DoS via Unbounded Request Body Buffering
[A16] Redis Password Exposure in Logs
[A17] Debug Trait Exposes Sensitive Data in Signer Structs
[A18] System Instructions Bypass in Fee Payer Policy
[A19] Jupiter price oracle lacks validation
[A20] Unchecked array indexing in instruction account access
[A21] Permanent Delegate extension can be used to undo payments to Kora

Recommendation
Status

[A22] sign_transaction and sign_and_send_transaction allow transactions to be submitted for free independently of the
price model

Recommendation
Status

[A23] Only first transfer fee is added to the Kora fee
Recommendation
Status

Informative Findings
[B01] Error message in validate_account_type only considers one of the possible error cases

Recommendation
Status

[B02] CacheValidator::validate has Result return type but never returns an Err value
Recommendation
Status

[B03] If-then-else for Option can be replaced by match expression
Status

[B04] Potentially misleading comment about signer selection strategy
Recommendation
Status

[B05] Spurious fields in SignTransactionResponse and SignTransactionIfPaidResponse
Status

[B06] Price model documentation in FEES.md
Recommendation
Status

4/73

[B07] Unnecessary calculation of transaction fees when using the fixed price model
Recommendation
Status

[B08] Price source argument being passed as Option unnecessarily
Recommendation
Status

[B09] No validation that authentication is configured
Recommendation
Status

[B10] Usage limiter implements a permanent limit that cannot be reset
Recommendation
Status

[B11] Fee payer policy is not checked during config validation
Recommendation
Status

[B12] Conversion between tokens and lamports uses floating point arithmetic
Recommendation
Status

[B13] Signer private key can be accessed outside of signer pool module
Recommendation
Status

Fuzzing Methodology
Fuzzing Targets Overview

random_bytes
invalid_instruction
balance_check

Fuzzing Findings
[F01] Out of bounds array access
[F02] Lower Fee Payer balance after transaction

5/73

Disclaimer
This report does not constitute legal or investment advice. You understand and agree that this report relates to new and emerging
technologies and that there are significant risks inherent in using such technologies that cannot be completely protected against. While
this report has been prepared based on data and information that has been provided by you or is otherwise publicly available, there
are likely additional unknown risks that otherwise exist. This report is also not comprehensive in scope, excluding a number of
components critical to the correct operation of this system. This report is for informational purposes only and is provided on an 'as-is'
basis, and you acknowledge and agree that you are making use of this report and the information contained herein at your own risk.
The preparers of this report make no representations or warranties of any kind, either express or implied, regarding the information in
or the use of this report and shall not be liable to you or any third parties for any acts or omissions undertaken by you or any third
parties based on the information contained herein.

Blockchain technology is still a nascent software arena, and its deployment and public offering carry substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we recommend seeking multiple independent
opinions on any claims that impact a large quantity of funds.

6/73

Executive Summary
Solana Foundation engaged Runtime Verification, Inc. to conduct a security audit of the Kora protocol and its associated infrastructure
code. The objective was to review the business logic and implementation in Rust and identify any issues that could cause the system
to malfunction or be vulnerable to exploitation.

Kora is a Solana paymaster service that enables fee abstraction and gasless transactions on the Solana blockchain. The protocol
allows end users to pay transaction fees in tokens other than SOL, with operators providing SOL to cover network fees and receiving
payment in alternative tokens. The system features a Rust-based JSON-RPC server with multi-signer pool support, configurable
pricing models, and fine-grained access control via allowlists and fee payer policies.

The audit was conducted over eight calendar weeks, from September 3rd to October 29th. Runtime Verification performed a design
review to assess the protocol's high-level intent and security-critical invariants, followed by a comprehensive manual review of the
codebase, threat modeling, and fuzz testing. We used automated static analysis tools to support this process by identifying potential
vulnerabilities and code quality issues.

7/73

https://runtimeverification.com/

Scope
This audit covers only the code contained in the Kora GitHub repository. Within this repository, specific modules and components were
highlighted as being in scope for this engagement. The repository, commit information, and operational assumptions are detailed
below:

Kora GitHub Repository
https://github.com/solana-foundation/kora
Commit: c2843ac

The following modules were in scope for the audit:

crates/lib/src/admin/
crates/lib/src/fee/
crates/lib/src/oracle/
crates/lib/src/rpc_server/
crates/lib/src/signer/
crates/lib/src/token/
crates/lib/src/transaction/
crates/lib/src/usage_limit/
crates/lib/src/validator/
crates/lib/src/cache.rs
crates/lib/src/config.rs
crates/lib/src/error.rs
crates/lib/src/state.rs

The audit is limited to the artifacts listed above. Off-chain components, third-party dependencies, deployment and upgrade scripts, and
any client-side logic are excluded from the scope of this engagement.

Our security analysis is based on the following operational assumptions. If any of these assumptions are violated, the protocol's
security guarantees may no longer hold, and additional review may be required.

Solana RPC Integrity
Solana RPC endpoints are trusted and provide accurate on-chain data without manipulation or censorship.

Remote Signer Security
Remote signer services are securely configured and properly authenticated, and their APIs behave as documented.

Cache Security
Redis cache is properly secured, not publicly accessible, and maintains data integrity throughout the system lifecycle.

Configuration Validity
Configuration files (kora.toml, signers.toml) contain valid, properly formatted data and are managed through secure operational
procedures.

Operator Best Practices
Operators follow security best practices documented in AUTHENTICATION.md and maintain secure key management for all
signer types.

8/73

https://github.com/solana-foundation/kora
https://github.com/solana-foundation/kora/commit/c2843ac93801aa51eeba69206defd19a7ac82b1d

Methodology
Although manual code review cannot guarantee the discovery of all possible security vulnerabilities, as noted in our Disclaimer, we
followed a systematic approach to make this audit as thorough and impactful as possible within the allotted timeframe.

The audit engagement lasted eight calendar weeks, from September 3rd to October 29th, 2025, and began with a focused design
review. We allocated the first two weeks to analyze the architecture and intended functionality of the Kora system. This included
reasoning about the interactions between the protocol components and identifying properties that should be upheld throughout the
system's lifecycle. Following the design review, we conducted a thorough manual code review of the in-scope modules, progressing
systematically.

The engagement included specialized focus areas such as fee calculation, arithmetic safety with particular attention to integer overflow
vulnerabilities, multi-signer key management across different backend providers (Memory, Turnkey, Privy), and price oracle integration
with Jupiter API for token pricing.

Findings presented in this report stem from a combination of:

Manual inspection of the Rust source code.
Design-level reasoning about system interactions and security invariants.
Fuzz testing to identify edge cases and potential vulnerabilities.

In addition to identifying bugs and vulnerabilities, we also evaluated arithmetic safety patterns, error handling strategies, reviewed
edge-case scenarios, and provided recommendations for code clarity and safety improvements.

Throughout the engagement, we held internal discussions among auditors to cross-review the findings and validate risk assessments.

9/73

Overview
Kora is a Solana paymaster that allows users to submit transactions while paying fees in a token of their preference. Kora serves as
an intermediary, signing the transaction as the fee payer and handling the network fees in SOL, while accepting payment from the user
in SPL tokens. This creates a smoother experience for users of applications that primarily hold non-native tokens, who can avoid
having to convert their tokens into SOL in order to pay gas fees.

The Kora node operator configures their deployment via a kora.toml file, allowing them to customize various aspects of the system,
including:

The price model determining how the user will be charged per transaction.
What operations will be available to the users.
The strategy that will be used for selecting a signer from the signing pool.
Restrictions on the transactions being processed, including what programs, tokens and accounts it can interact with.
Extra functionalities such as authentication, caching and usage limits.

A Kora node is deployed as an RPC server, allowing users to send requests via the Kora RPC client in order to estimate transaction
fees, generate payment instructions to be included in a transaction, and have the transaction signed and submitted to the Solana
network. Before signing a transaction, Kora performs validation to ensure that the transaction complies with the restrictions specified in
the configuration file and that it includes sufficient payment to cover the Kora fees in accordance with the price model.

10/73

Critical Properties
The following correctness and security properties must be upheld by the Kora implementation. We also list possible attack vectors that
need to be protected against.

Network Security
Authentication layers (API or HMAC), if enabled, must block requests from unauthenticated users.

Private Key Security
Signer private keys are not leaked by the system.

Fees
Fees charged by the system match the pricing model specified in the config file.
If using the margin pricing model, fees match the fee calculation formula.
The system must refuse to sign any transaction that does not include a payment of at least the required amount to the correct
payment address, in one of the tokens accepted for payment. Note that if the pricing model is free , the required amount is 0, so
no payment is required.
If using the margin pricing model, the amount transferred by the user to the payment address is at least the amount paid in fees
by the fee payer.

Config and Transaction Validation
Only transactions that match the parameters specified in the config file are signed.
All settings specified in the config file must be correctly enforced during system execution.

Caching
The cache must not return outdated values when a more recent value is required.
Cache is not vulnerable to manipulation by the user.

Possible Attack Vectors
Oracle manipulation.
Denial of service.
Precision errors in fee calculation.
Numeric overflows.
Lookup table address validation bypass.
Instructions inserted into the transaction siphoning funds from the Kora node.

11/73

https://github.com/solana-foundation/kora/blob/main/docs/operators/CONFIGURATION.md#price-configuration-optional
https://github.com/solana-foundation/kora/blob/main/docs/operators/FEES.md

Module Summaries
Below we present summaries of the central modules in the Kora library, including diagrams of the different submodules, descriptions of
the main data structures and functions defined in each module, and their interactions with other modules. We also include shorter
descriptions of the additional modules at the end.

Fee Module (fee)

_audits_solana-foundation_kora/crates/lib/src/fee

 fee.rs price.rs

 mod.rs

The Fee module implements a six-component fee structure that calculates transaction costs across multiple token types. As the
central pricing authority in Kora's architecture, this module integrates with external oracle systems for real-time token valuation while
supporting three pricing models: Free, Margin-based, and Fixed.

The architecture handles financial scenarios including account creation fees, transfer fees, and Kora service charges, providing
transparency through detailed component breakdowns while maintaining efficiency through caching mechanisms.

Data Structures
TotalFeeCalculation holds the breakdown of all six fee components (base fee, account creation, signature, outflow, payment

instruction, transfer fees) along with the total amount in lamports.
PriceConfig wraps the price model configuration and provides methods to apply Free, Margin, or Fixed pricing strategies to

calculated fees.
PriceModel is an enum with three variants: Free (zero cost), Margin (percentage markup), and Fixed (oracle-based token

conversion).
FeeConfigUtil and TransactionFeeUtil are empty structs that function as namespaces for fee calculation and transaction fee

estimation functions respectively.

Fee Calculation Formula
total_fee_lamports = base_fee + account_creation_fee + kora_signature_fee

 + fee_payer_outflow + payment_instruction_fee + transfer_fee_amount

Main Functions
FeeConfigUtil::estimate_kora_fee

Calculates all six fee components then applies the configured price model to return accurate cost breakdown.

12/73

For PriceModel::Free , returns all zero fee components without expensive RPC calls or account lookups.
For non-free models, delegates to estimate_transaction_fee for detailed component analysis, then applies price model via
PriceConfig::get_required_lamports .

Components include base fee, account creation, Kora signature, fee payer outflow, payment instruction, and transfer fees.
Returns TotalFeeCalculation with all six fee components, based on current network conditions and transaction analysis.
Returns an error in any of the following cases:

Configuration retrieval fails (get_config() returns error).
Fee component calculation fails (estimate_transaction_fee() returns RpcError , AccountNotFound , or
FeeEstimationFailed).

Price model application fails (get_required_lamports() returns ValidationError or UnsupportedFeeToken).

FeeConfigUtil::estimate_transaction_fee

Computes comprehensive fee breakdown for transactions.
Components calculated in order:

Base transaction fee via RPC (TransactionFeeUtil::get_estimate_fee_resolved).
Account creation fees for ATA creation (get_associated_token_account_creation_fees).
Kora signature fee if fee payer not in transaction signers (is_fee_payer_in_signers). Adds LAMPORTS_PER_SIGNATURE
(5000 lamports).
Fee payer outflow for System Program operations using saturating arithmetic (calculate_fee_payer_outflow).
Payment instruction fee if payment required (has_payment_instruction). Returns 0 if payment found, otherwise 50
lamports (ESTIMATED_LAMPORTS_FOR_PAYMENT_INSTRUCTION).
Transfer fees at current epoch for Token2022 transfers (calculate_transfer_fees).

Aggregates components using regular addition (not saturating).

FeeConfigUtil::calculate_fee_payer_outflow

Calculates total SOL the fee payer sends out in System Program operations.
Parses System Program instructions using IxUtils::parse_system_instructions to identify transfers, account creation
funding, and nonce withdrawals.
Uses saturating arithmetic for individual operations to prevent underflow.
Only tracks System Program operations; other program types (SPL, custom programs) are excluded from outflow calculation.
Returns total outflow amount in lamports for inclusion in fee calculation.

FeeConfigUtil::has_payment_instruction

Detects SPL transfer to Kora payment destination.
Iterates through transaction instructions to find transfers matching payment address and allowed token mints.
Returns 0 if payment instruction found, otherwise returns estimated payment instruction fee (50 lamports).
Uses get_payment_instruction_info helper for cache-first account lookups and program detection.
Supports both SPL Token and Token2022 program transfers.

TransactionFeeUtil::get_estimate_fee_resolved

Estimates transaction fees for Legacy and V0 transactions.
Calls rpc_client.get_fee_for_message directly for Legacy transactions.
For V0 transactions, creates Legacy message using Message::new_with_compiled_instructions with resolved lookup
table addresses for RPC fee calculation.
Returns base network fee in lamports without Kora-specific additions.
Essential for fee calculation as it provides the Solana network's base transaction cost.

13/73

PriceConfig::get_required_lamports

Applies configured price model to calculated fee amounts.
For Free model, returns zero regardless of calculated fees.
For Margin model, multiplies fee by (1.0 + margin) using f64 arithmetic, then casts to u64.
For Fixed model, converts token amount to lamports via TokenUtil::calculate_token_value_in_lamports using oracle
price data.
Returns final fee amount in lamports after price model application.

Error Conditions
FeeConfigUtil::estimate_kora_fee

RPC Client Failure: get_fee_for_message() returns RPC error during base fee calculation.
Cache miss with RPC timeout during account retrieval exceeds configured bounds.
Empty instruction set or malformed message during fee parsing (HIGH - validation bypass risk).
Price data staleness or values outside configured bounds for Fixed price model (HIGH - fund drain risk).
Token2022 mint account fails to deserialize during transfer fee calculation.
Unable to determine token program type for account size calculation.
Token2022 transfer fee calculation fails due to epoch boundary conditions.
Unable to resolve payment destination account for validation.

FeeConfigUtil::estimate_transaction_fee

Transaction signature count exceeds maximum allowed signatures.
Instruction references program not in allowed programs list.
V0 transaction lookup table index out of bounds during resolution.
Malformed System Program instruction data fails parsing.
Invalid instruction format during outflow calculation.
Unable to locate fee payer in transaction signer set.
System Program outflow exceeds configured maximum limits.
Integer overflow during final fee component aggregation.

PriceConfig::get_required_lamports

Percentage margin calculation overflows for large base amounts.
Oracle price conversion fails due to decimal precision limits.
Invalid price model configuration prevents calculation.
Token decimal places inconsistent between mint and oracle data.

Interaction with Other Modules
The fee module maintains dependencies on oracle module for price data, token module for metadata, cache module for account state,
and state module for configuration. Integration points with transaction module for instruction parsing and rpc_server module for client
responses.

Calls oracle module via PriceSource for Jupiter API price discovery.
Calls token module for Token2022 transfer fee calculations and decimal handling.
Calls transaction module for instruction parsing and transaction resolution.
Calls cache module for account lookups with RPC fallback.
Calls state module for global configuration access.
Called by rpc_server methods for fee estimation endpoints.

14/73

Called by validator module for fee validation checks.

Security Considerations
Integer overflow risk in main fee totaling: uses regular + addition without overflow protection.
Uses fixed 50 lamport estimate for priority fees when no payment instruction found.
ATA creation fees calculated before payment instruction analysis, potential double-counting.
Uses floating-point arithmetic for margin calculations.
Fee calculations rely on external price feeds without implementing explicit staleness bounds or fallback mechanisms at the fee
layer.

Properties and Invariants
Total fee represents exact sum of six components:
base_fee + account_creation_fee + kora_signature_fee + fee_payer_outflow + payment_instruction_fee + transfer_fee

.
All fee components must be non-negative integers.
Total fees cannot exceed safe limits.
If any component calculation fails, entire estimation returns error rather than partial results.
If PriceModel::Free , short-circuits to return all zero components early without RPC calls or account lookups.
Kora signature fee (5000 lamports) added only if fee payer not among transaction signers per is_fee_payer_in_signers check,
0 otherwise.

Fee payer outflow tracks only System Program operations (transfers, CreateAccount, nonce withdrawals).
Token2022 transfer fees are epoch-aware and should be calculated at current network epoch via mint configuration.
The fee module ensures the following:

Fee calculations always finish in reasonable time.
Valid transactions get complete fee estimates.
All failure conditions are reported without silent failures.

RPC Server Module (rpc_server)

15/73

_audits_solana-foundation_kora/crates/lib/src/rpc_server

method

openapi

 server.rs

 rpc.rs

 auth.rs

 get_payer_signer.rs

 get_blockhash.rs

 sign_transaction_if_paid.rs

 sign_and_send_transaction.rs

 sign_transaction.rs

 estimate_transaction_fee.rs

 transfer_transaction.rs

 get_supported_tokens.rs

 get_config.rs

 middleware_utils.rs

 args.rs

 mod.rs

 mod.rs

 docs.rs

 helper.rs

 mod.rs

This module contains the functionality for running the Kora RPC server, representing the central coordination point of Kora's operation.
It can be split into the following key submodules:

server : Initializes the RPC server, utilizing the Tower library (https://crates.io/crates/tower) for building the multiple layers of the
middleware stack.
auth : Implements functionality for API and HMAC authentication layers.
method : Implements the methods that can be called on the RPC server.
rpc : Defines the KoraRpc struct that will handle the requests sent to the server and call the appropriate method.

The methods provided by the server are the following:

estimate_transaction_fee : Calculates the estimated fee required for a given transaction.
get_blockhash : Queries the latest blockhash from the Solana RPC client.
get_config : Retrieves information from the Kora global config.
get_payer_signer : Gets the next signer from the signer pool and the payment destination.
get_supported_tokens : Gets the list of allowed tokens as defined in the Kora global config.
sign_transaction : Signs the given transaction, trying to use the requested signer if provided.

16/73

https://crates.io/crates/tower

sign_transaction_if_paid : As sign_transaction , but checks first if the transaction includes a payment of the transaction fee.
sign_and_send_transaction : As sign_transaction , additionally submitting the transaction to the Solana network.
transfer_transaction : Builds a transfer transaction according to the given parameters, returning the signed transaction.

Intended to be used by a client to build the payment instruction to include in the transaction.

Data Structures
KoraRpc holds a pointer to the Solana RPC client and is responsible for handling the requests to the Kora RPC server, calling

the appropriate corresponding function defined in the method submodule.
The auth submodule defines the ApiKeyAuthLayer and HmacAuthLayer data structures, which represent the respective
authentication layers integrated into the server if each of those options is configured.
Each method in the methods submodule defines corresponding ...Request and ...Response data structures, containing the
data sent to the server as part of the request and the data returned by the server as a response.

server Submodule
run_rpc_server

Starts up RPC server on given port.
Initializes usage limiter. (UsageTracker::init_usage_limiter)
Enables HTTP support.
Registers the methods from method module that are enabled by the global config.
Middleware stack for the server comprised of several layers:

ProxyGetRequest layer
Rate-limit layer
Metrics handler layer (optional, if metrics enabled in config)
CORS layer
Metrics collection layer (optional, if metrics enabled in config)
Authentication layer for API key (optional, if API key provided in config or environment variable)
Authentication layer for HMAC (optional, if HMAC secret provided in config or environment variable)

method Submodule
estimate_transaction_fee

Given a transaction, returns the estimated transaction fee in lamports, as well as in a specific token if requested.
Calculation is made based on a particular signer. This signer can be provided in the request, otherwise it is selected from the
signer pool based on the configured selection strategy. The public key of this signer is returned along with the fee.
The payment address is also returned. This will be the address specified in the global config, or the signer address if none
has been specified.
Does not submit the transaction or change on-chain state, only estimates the fees.
If signer is selected using a round-robin strategy, will increment the next signer index.

get_blockhash

Returns a recent blockhash from the Solana RPC client.
Returned blockhash must not be empty.

get_config

Returns list of fee payer public keys from the signer pool, as well as the validation parameters and list of enabled methods
from the global config.

get_payer_signer

17/73

Returns the next signer from the signer pool based on the configured selection strategy.
If using a round-robin strategy, will increment the next signer index.

get_supported_tokens

Returns the list of allowed tokens.

sign_transaction

Returns the signed transaction, along with the signature and the signer's public key.
If usage limiter is enabled, checks transaction usage limit for the sender, and returns an error if it's exceeded.
If signer key is specified in the request, uses this as the signer. Otherwise, selects the next signer from the pool.

sign_transaction_if_paid

Same as sign_transaction , but returns an error if the required fee is not paid by the transaction.

sign_and_send_transaction

Same as sign_transaction , but also submits the transaction to the Solana RPC client, waiting for confirmation.

transfer_transaction

Builds a transfer transaction with the given parameters.
Uses a TransactionValidator to validate that the source and destination addresses are not in the list of disallowed
accounts.
Token can be either native SOL or an SPL token. In the latter case, uses the token module to build the instructions.
Message blockhash is the latest blockhash obtained from the Solana RPC client.
Validates the transaction with the TransactionValidator as well.
Signature is added to the transaction at the fee payer position.

Interactions with Other Modules
As Kora's central coordination point, the server module calls all other modules either directly or indirectly. Most significantly:

Calls the fee module to estimate transaction fees.
Calls the signer module to retrieve signers from the signer pool in order to sign transactions.
Calls the transaction module to resolve and sign user-submitted transactions, or to build a payment transaction.
Calls the validation module to validate transactions.

Security Considerations
Authentication layers should be properly configured to prevent unauthorized access.
Validation must be performed at the appropriate points before each operation is executed.
Protection against DoS attacks.

Properties and Invariants
Liveness check should not require authentication.
If an authentication layer is configured, requests from unauthenticated clients should not be processed.

Signer Module (signer)

18/73

_audits_solana-foundation_kora/crates/lib/src/signer

memory_signer

privy

turnkey

vault

 pool.rs config.rs

 signer.rs

 config.rs

 config.rs

 config_trait.rs

 config.rs

 config.rs

 signer.rs

 utils.rs

 vault_signer.rs

 solana_signer.rs

 signer.rs

 keypair_util.rs

 init.rs

 mod.rs
 mod.rs

 mod.rs

 types.rs

 mod.rs

 types.rs

 mod.rs

This module implements the functionality in Kora dealing with the signers, including initializing the signer pool based on the signer
config file, selecting a signer from the pool, and performing the actual signing of messages depending on the signer type. Each of the
signer types supported by Kora is implemented in its own submodule:

memory_signer directly uses a Solana private key provided in an environment variable or passed as a CLI argument.
privy uses a key managed by a Privy account.
turnkey uses a key managed by a Turnkey account.
vault uses a key stored in a HashiCorp Vault server.

Other key submodules include the config submodule, which loads and validates the signer config provided in the signers.toml
file, and the pool submodule, which implements and manages the signer pool, being able to retrieve signers from their public keys or
selecting a signer based on the configured selection strategy.

Data Structures
KoraSigner is an enum representing the different signer types supported by Kora: Memory , Turnkey , Vault and Privy .

Each variant contains a different struct representing the signer implementation from the corresponding submodule.
SelectionStrategy is an enum representing the three possible signer selection strategies: round-robin, random or weighted.
SignerWithMetadata is a struct containing a KoraSigner along with accompanying metadata, including its human-readable

name, its weight (if using the weighted selection strategy) and the timestamp of when it was last selected.
SignerPool is a collection of signers together with a signer selection strategy and additional information used to implement the

strategy (such as the current index for the round-robin strategy). It is initialized from the signers.toml config file.

Main Functions
init_signers

19/73

Initializes signer pool based on the RPC args.
If the --no-load-signer option was provided, skips initialization.
Otherwise, loads signer pool config file from the provided path and creates a signer pool based on it, saving it in the global
pointer in the state module.

SignerPoolConfig::validate_signer_config

Validates the signer pool configuration, returning an error in any of the following cases:
The list of signers is empty.
A signer has an empty name.
One of the required environment variables has not been provided for a signer (according to its signer type).
Two signers have the same human-readable name.
A signer is given a weight of 0 for the weighted strategy.

SignerPool::get_next_signer

Returns the next signer based on the configured signer selection strategy.
If using the round-robin strategy, this increments the index.

SignerPool::get_signer_by_pubkey

Returns the signer with the given public key.

KoraSigner::sign_solana

Signs a transaction in the format expected by Solana, delegating to the proper implementation depending on the signer type.

Interactions with Other Modules
Called by admin module to iterate over the signers and create ATAs for all of them.
Called by rpc_server module to select signers for fee estimation and transaction signing.
Called by transaction module to sign transactions.
Calls validator module to perform validation checks on the signer pool configuration.

Security Considerations
Signer pool holds private keys of the signers and returns them on some of its functions. It's important to ensure that these cannot
be leaked to the user.

Token Module (token)

20/73

_audits_solana-foundation_kora/crates/lib/src/token

 token.rs

 spl_token_2022.rs

 spl_token.rs

 interface.rs

 spl_token_2022_util.rs

 mod.rs

This module defines a common interface for both SPL and 2022 tokens, consisting of the following traits:

TokenState is used as an interface for ATAs, allowing to retrieve information such as the owner and the current balance.
TokenMint is used as an interface for a token's mint, allowing to retrieve information such as the mint authority and the total

supply.
TokenInterface is used as an interface for the token program (either the original SPL Token Program or the Token 2022

Program), with functionality to unpack mint and token account data and to build instructions for account creation and token
transfers.

Each of these traits is implemented for appropriate data structures in the spl_token and spl_token_2022 submodules. The module
also includes a number of utility functions in the token submodule for operating with tokens, encompassing functionality such as
converting between tokens and lamports, validating Token2022 extensions and checking that a transaction includes a required token
payment.

Main Functions
TokenUtil::calculate_token_value_in_lamports

Convert an amount in a token's base units to lamports, given the token price as provided by the given oracle.

TokenUtil::calculate_lamports_value_in_token

Convert an amount in lamports to a token's base units, given the token price as provided by the given oracle.

TokenUtil::process_token_transfer (note: does not strictly conform to spec currently)

Validates that the transaction includes a payment to the expected destination account amounting to the required lamport
value.
If there are no errors, returns Ok(true) if there is a payment to the expected destination account using a supported payment
token, and this payment is of value greater than or equal to the required amount of lamports. Returns Ok(false) otherwise.

Interactions with Other Modules
Called by the admin module to retrieve the token programs to create ATAs for.
Called by the fee module to calculate token prices and convert between tokens and lamports.
Called by the validation module to validate that a payment of the Kora fees is included in the submitted transaction.
Calls the oracle module to query token prices.
Calls the transaction module to parse token instructions.

21/73

Security Considerations
Token price determines the amount that the user will be required to pay, so it's important that it is accurate in the calculations.
Oracle manipulation, for instance, could allow a user to effectively underpay the Kora node.
Floating point imprecision in the calculations also affects the amount the user is required to pay. Even small errors in the user
favor could add up over multiple transactions and be exploited by malicious users.

Properties and Invariants
Conversion between token and lamports must follow the correct exchange rate.
Conversion should be reversible: converting from tokens to lamports and back should give back the original value (within some
small margin of error to account for floating-point imprecisions), and vice-versa.
process_token_transfer must only approve a transaction if it has a correct payment of the required fees.

Transaction Module (transaction)

_audits_solana-foundation_kora/crates/lib/src/transaction

 versioned_transaction.rs instruction_util.rs

 versioned_message.rs

 transaction.rs

 mod.rs

The Transaction module processes both Legacy and V0 Solana transactions. It takes raw transaction data from clients and turns it into
validated, signable transactions ready for execution.

Data Structures
VersionedTransactionResolved holds the original transaction along with resolved account keys (including lookup table

addresses) and all instructions (outer and inner).
ParsedSystemInstructionType and ParsedSPLInstructionType are enums that classify different instruction types for System

Program and SPL/Token2022 operations respectively.
ParsedSystemInstructionData and ParsedSPLInstructionData contain the structured data extracted from parsed instructions,

including account references and operation-specific fields.
VersionedTransactionOps is a trait that defines transaction signing operations for VersionedTransactionResolved .
TransactionUtil , IxUtils , and LookupTableUtil are structs that function as namespaces for transaction operations,

instruction utilities, and lookup table resolution respectively.

Main Functions
VersionedTransactionResolved::from_transaction(tx, rpc_client, sig_verify: bool)

Creates a fully resolved transaction from a raw VersionedTransaction with RPC client.
This function should be the first call in any method that uses transactions, to ensure that all later validation and processing
includes resolved lookup table addresses.

22/73

For V0 transactions, resolves lookup table addresses via LookupTableUtil::resolve_lookup_table_addresses and
extends all_account_keys with resolved addresses.
Fetches inner instructions via fetch_inner_instructions using transaction simulation.
On simulation failure, returns InvalidTransaction error.
Returns VersionedTransactionResolved with complete account keys and all instructions (outer + inner) for comprehensive
analysis.
Returns error in any of the following cases:

Transaction simulation fails (fetch_inner_instructions returns RpcError or InvalidTransaction)
Lookup table resolution fails for V0 transactions (AccountNotFound or RpcError)
Address lookup table deserialization fails (InvalidTransaction)

VersionedTransactionResolved::from_kora_built_transaction

Creates resolved transaction from Kora-built transactions without external RPC calls.
Used for transactions constructed internally where lookup tables are not expected.
Sets all_account_keys to static keys only and all_instructions from message instructions.

VersionedTransactionOps::sign_transaction

Signs transactions using configured KoraSigner with validation via TransactionValidator .
Process flow: validation -> blockhash update -> fee validation -> signature generation -> signature placement.
Performs validation via TransactionValidator::validate_transaction .
Updates recent blockhash using finalized commitment if signatures array is empty.
Validates lamport fees before signing via validate_lamport_fee to ensure fee bounds compliance.
Uses find_signer_position to determine correct signature placement in signatures array.
Returns signed transaction with valid signature at correct position, preserving existing signatures.
Returns an error in any of the following cases:

Transaction validation fails (TransactionValidator::validate_transaction returns ValidationError).
Fee validation fails (validate_lamport_fee returns FeeEstimationFailed).
Signer backend fails (KoraSigner returns SigningError).
Recent blockhash update fails (RpcError).

VersionedTransactionOps::sign_transaction_if_paid

Conditional signing with payment verification for fee-required transactions.
Process flow: fee estimation -> payment validation -> conditional signing.
Estimates fees using FeeConfigUtil::estimate_kora_fee to determine required payment amount.
Validates payment via TransactionValidator::validate_token_payment to ensure sufficient token transfer to payment
destination.
Delegates to sign_transaction only after payment validation passes.
Returns signed transaction if payment adequate, otherwise returns payment validation error.
Returns error if fee estimation fails (FeeEstimationError), payment validation fails (PaymentValidationError), or signing
fails (SignerError).

TransactionUtil::decode_b64_transaction

Decodes base64 transaction data with backward compatibility fallback.
Attempts VersionedTransaction deserialization first for modern format support.
Falls back to Transaction deserialization with conversion to VersionedTransaction for legacy compatibility.
Handles both serialization formats to support diverse client implementations.
Supports both standard base64 and URL-safe base64 encoding variants.

23/73

Returns an error in any of the following cases:
Invalid base64 format (InvalidTransaction).
Transaction deserialization fails for both VersionedTransaction and Transaction formats (InvalidTransaction).
Legacy to versioned transaction conversion fails (InvalidTransaction).

TransactionUtil::encode_b64_transaction

Encodes VersionedTransaction to base64 format for client transmission.
Serializes transaction using bincode for compact representation.
Applies standard base64 encoding for compatibility with client libraries.
Maintains symmetric operation with decode_b64_transaction for round-trip integrity.
Used for returning signed transactions to client applications.
Returns base64-encoded transaction string for client consumption.

Error Conditions
VersionedTransactionResolved::from_transaction

Transaction simulation request exceeds configured timeout bounds.
Simulation fails due to account lock conflicts with concurrent transactions.
Transaction exceeds compute unit limits during simulation execution.
RPC fails to fetch address lookup table accounts during V0 resolution.
Address lookup table account data fails to deserialize properly.
Lookup table index exceeds available address count.
Resolved addresses create duplicate entries in account key array.
Unable to compile resolved addresses into Legacy message for fee estimation.
Signature verification settings conflict with simulation requirements.

VersionedTransactionOps::sign_transaction

TransactionValidator::validate_transaction() rejects transaction structure.
Calculated lamport fees exceed configured maximum allowed amounts.
KoraSigner backend returns signing error.
Recent blockhash is too old for transaction validity requirements.
Unable to determine correct signature placement in signatures array.
Signed transaction exceeds maximum transaction size limits.
Required accounts are locked by concurrent transactions.
Fee payer account lacks sufficient SOL for transaction execution.

VersionedTransactionOps::sign_transaction_if_paid

validate_token_payment() rejects insufficient payment amounts.
Payment token not in allowed SPL paid tokens list.
Payment directed to incorrect destination address.
estimate_kora_fee() fails during payment validation.

Multiple payment transfers fail to aggregate to required amount.

TransactionUtil::decode_b64_transaction

Transaction data exceeds maximum deserialization size.
Unable to convert Legacy Transaction to VersionedTransaction.
Instruction data exceeds maximum allowed instruction size.
Transaction contains more account keys than maximum allowed.

24/73

Signature array length mismatches message header specification.

IxUtils::parse_system_instructions

Unrecognized System Program instruction variant.
System transfer amount exceeds u64 maximum value.
CreateAccount instruction with invalid account parameters.

Nonce-related instruction with incorrect account structure.
Assign instruction referencing invalid program ownership.

IxUtils::parse_token_instructions

Instruction targets wrong token program.
Token transfer instruction with invalid account structure.
Token instruction requires authority not present in signers.
Instruction targets frozen token account.
Token amount decimals inconsistent with mint configuration.

Interaction with Other Modules
The dependencies of transaction module include validator module for transaction validation, fee module for cost calculation, signer
module for cryptographic operations, and cache module for account state. External dependencies on Solana RPC for simulation and
lookup table data.

Calls validator module via TransactionValidator for validation.
Calls fee module via TransactionFeeUtil and FeeConfigUtil for fee operations.
Calls signer module via KoraSigner for transaction signing.
Calls cache module via CacheUtil for account and lookup table fetching.
Calls state module for configuration access.
Called by rpc_server methods for all transaction RPC endpoints.
Uses instruction_util::IxUtils for instruction parsing and compilation.

Security Considerations
Uses bs58::decode(&ix.data).into_vec().unwrap_or_default() potentially masking decoding failures.
Resolved addresses used without additional validation against allow/disallow lists.
Returns InvalidTransaction on simulation errors with no degradation that could hide malicious inner instructions.

Properties and Invariants
VersionedTransactionResolved maintains immutable all_account_keys ordering after resolution.

V0 transactions with lookup tables resolve to deterministic address lists based on lookup table contents and index ordering.
Transaction encoding/decoding via encode_b64_transaction / decode_b64_transaction are symmetric operations preserving all
transaction data.
Signature placement preserves existing signatures while adding new ones at calculated positions.
Transaction message integrity must be preserved through all resolution and signing operations.
Inner instruction parsing only occurs when transaction simulation returns success (no error field in simulation result).
The transaction module maintains these invariants:

Address lookup table resolution follows deterministic index bounds validation (writable indices before readonly indices).
Instruction decompilation reconstructs original Instruction structures from CompiledInstruction with resolved account
references.
Signature verification settings are propagated consistently through simulation and validation workflows.

25/73

Parsed instruction caches (parsed_system_instructions , parsed_spl_instructions) remain valid.
Cross-program invocation instructions are captured completely when simulation succeeds.

Validator Module (validator)

_audits_solana-foundation_kora/crates/lib/src/validator

 signer_validator.rs

 config_validator.rs

 cache_validator.rs

 account_validator.rs

 transaction_validator.rs

 mod.rs

This module has two responsibilities:

Validating the config files to identify and disallow invalid or inconsistent configurations, as well as to warn users of potentially
dangerous or undesirable configurations. This is handled primarily by the config_validator submodule, which delegates part of
the work to the account_validator , cache_validator and signer_validator submodules.
Validating transactions for compliance with the restrictions specified in the config file, preventing the submission of transactions
that, for example, interact with disallowed programs, tokens or accounts. This is handled by the transaction_validator
submodule

Data Structures
The config_validator , cache_validator and signer_validator submodules each have a corresponding
ConfigValidator , CacheValidator and SignerValidator struct. However, these are empty structs functioning only as

namespaces for the associated validation functions.
The account_validator submodule has an AccountType enum with the values Mint , TokenAccount , System and Program ,
which is used to perform validation that an account has data consistent with the appropriate account type. However, the
validate_account function is on the top-level of the account_validator module, with no associated data structure.

The transaction_validator submodule has a corresponding TransactionValidator struct, which unlike the structs for the
other submodules does contain internal data. This data is loaded from the global config in the state module and transactions
are checked against it during transaction validation.

config_validator Submodule

26/73

The main function in this submodule is validate_with_result_and_signers , which validates the global config and creates two
lists: one of errors and one of warnings. It prints both lists to the terminal and returns a Result : either Err with the list of errors
or, if that list is empty, Ok with the list of warnings.
validate_with_result_and_signers delegates to the other submodules to perform particular steps:

cache_validator to validate usage limit configuration.
account_validator to validate accounts in the lists of allowed programs, tokens and SPL paid tokens of the config.
signer_validator to validate the signers config file.

validate_with_result is a wrapper around validate_with_result_and_signers with signers_config_path set to None .
This skips the signers config validation.
validate is a function that performs a simplified validation of the global config, and is only used for testing.

List of possible errors returned by validate_with_result_and_signers :
Config is not initialized (in this case, return immediately).
Payment address is set but is in an invalid format.
List of allowed tokens is empty.
A token address in the list of allowed tokens is in an invalid format.
A token address in the list of allowed SPL paid tokens is in an invalid format.
An address in the list of disallowed accounts is in an invalid format.
An extension is in the list of blocked mint extensions or blocked account extensions is in an invalid format.
Fees are enabled but neither SPL nor 2022 Token Program is in the list of allowed programs.
Fees are enabled but list of allowed SPL paid tokens is empty.
There is a token in the list of allowed SPL paid tokens that is not in the list of allowed tokens.
Fixed price token address is in an invalid format.
Fixed price token address is not in the list of allowed SPL paid tokens.
Price margin is negative.
Any errors returned by CacheValidator::validate , if usage limit is enabled.
(only if RPC validation is not skipped) Any element in the list of allowed programs, allowed tokens or allowed SPL paid tokens
is in an invalid format for the appropriate account type (as per account_validator::validate_account).
(only if RPC validation is not skipped) There are missing ATAs for the payment address, or an error occurred when trying to
determine if there were missing ATAs.
Any errors returned by SignerValidator::validate_with_result , if signer pool config is provided.
Signer pool config couldn't be loaded from the provided path.

List of possible warnings returned by validate_with_result_and_signers :
Rate limit is set to 0.
All RPC methods are disabled.
Max allowed lamports is set to 0.
Max signatures is set to 0.
Price source is set to Mock .
List of allowed programs is empty.
System Program is not in the list of allowed programs.
Token Program (neither SPL or 2022) is not in the list of allowed programs.
List of allowed SPL paid tokens is set to All .
Fixed price is set to 0 (free).
Price margin is greater than 100%.
Any warnings returned by CacheValidator::validate , if usage limit is enabled.
Any warnings returned by SignerValidator::validate_with_result , if signer pool config is provided.

27/73

account_validator Submodule
The main function in this submodule is validate_account , which makes an RPC call to the Solana node in order to validate that
an account exists for a given public key. Optionally, if an expected account type is provided, it calls
AccountType::validate_account_type to check that the account has data consistent with that account type.
validate_account_type validates a given account as the expected account type, returning an error in any of the following

cases:
A Mint or TokenAccount fails to be deserialized as that account type.
A Mint or TokenAccount is not owned by a token program.
A System is not owned by SYSTEM_PROGRAM_ID .
A Program is not executable.
A Mint or TokenAccount is executable.

cache_validator Submodule
The main function in this submodule is validate , which validates a given usage-limiting config, including making a Redis
connection test for the usage limit cache.
The function returns two lists: one with errors and one with warnings.
If usage limiting is disabled, the function skips validation and just returns empty lists.
List of possible errors returned by validate :

A cache URL is not provided and fallback is disabled.
The cache URL doesn't start with redis:// or rediss:// .
The Redis connection test fails when fallback is disabled.

List of possible warnings returned by validate :
A cache URL is not provided but fallback is enabled (warns that fallback mode will disable usage limits).
Fallback is disabled (warns that service will fail if cache becomes unavailable).
The Redis connection test fails when fallback is enabled.

signer_validator Submodule
The main function in this submodule is validate_with_result , which validates the signer pool config, returning a list of errors
and warnings.
Delegates error checks to methods of the SignerPoolConfig (from the signer::config module).
List of possible errors returned by validate_with_result :

Signer list is empty.
Config for an individual signer is invalid.
There are duplicate signer names.
The pool uses a weighted selection strategy and one of the signers has a weight of 0.

List of possible warnings returned by validate_with_result :
The pool uses a weighted selection strategy and one of the signers has no weight specified.
The pool doesn't use a weighted selection strategy but one of the signers has a weight specified.

transaction_validator Submodule
Implements the TransactionValidator datatype, which is used to validate transactions according to the parameters specified in
the global config.
The TransactionValidator::new function constructs a new validator based on the global config parameters and the provided
fee payer public key. It also validates that the configured addresses in the allowed and disallowed lists are valid.

28/73

The main method of the TransactionValidator is validate_transaction , which validates that a given transaction is
consistent with the configured parameters. The method returns an error in any of the following cases:

The transaction has no instructions or no account keys.
The transaction has no signatures or more signatures than the maximum allowed number.
An instruction calls a program that is not in the list of allowed programs.
The total amount transferred in the transaction is higher than the maximum total.
An instruction calls a program that is in the list of disallowed accounts, or an account in the list of accounts read or written by
the program is in the list of disallowed accounts.
The fee payer is used in the transaction in a way that is disallowed by the fee payer policy.

The TransactionValidator also includes the following additional public methods:
fetch_and_validate_token_mint : Returns token mint for a given public key, as long as it's among the allowed tokens.
validate_lamport_fee : Validates that a given fee is below the maximum allowed value.
is_disallowed_account : Checks that a given account is in the list of disallowed accounts.
validate_token_payment : Validates for a given transaction that the token transfer to the expected payment destination

matches or exceeds the given required lamport amount.

Interaction with Other Modules
The TransactionValidator methods are called by the transaction::versioned_transaction module when signing a
transaction, and by the transfer_transaction RPC method when building a transfer transaction.
ConfigValidator::validate_with_result_and_signers is called by the CLI on the kora config ... commands, and also

when starting the RPC server on the kora rpc start command.
The signer_validator submodule delegates part of the validation to the signer::config module.
The transaction_validator submodule calls the fee module to calculate the fee payer outflow, in order to validate that it
doesn't exceed the maximum amount.

Security Considerations
If transaction validation is incomplete, it could allow for an undesirable transaction to be submitted to the network.
If config validation is incomplete, it could leave Kora misconfigured, potentially opening up attack vectors.

Properties and Invariants
TransactionValidator allows a transaction exactly according to the config.

Other Modules

Admin Module (admin)
This module is responsible for initializing ATAs for signers so that they are able to receive fee payments in the appropriate tokens. It is
called by the Kora CLI on the kora rpc initialize-atas RPC command. If a payment address is provided in the config, an ATA is
initialized for that address for all SPL payment tokens allowed in the config. If no payment address is specified, it initializes ATAs for all
signers in the signer pool.

Cache Module (cache)
This module handles caching of account information obtained through Solana RPC calls. When enabled, caching avoids needing to
perform expensive RPC calls when the data has already been retrieved previously. The cache is initialized by the CLI and called by
the admin , metrics , token , transaction and validation modules to retrieve information of Solana accounts. The main

29/73

function, get_account , has a force_refresh parameter that when set forces a new value to be retrieved through RPC and cached,
rather than returning the previously cached value.

Config Module (config)
This module is responsible for loading the Kora config specified in the kora.toml file, defining the data structures used to represent
this config in memory and accessors for the different configuration parameters. The overall structure will be stored in the state
module.

Metrics Module (metrics)
This module provides monitoring for the Kora RPC server. If configured, this will be added as a middleware layer by the rpc_server
module during server initialization. Its primary purpose is to track the balance of the signers in order to detect possible attacks leading
to draining of funds.

Oracle Module (oracle)
This module serves as the interface with a price oracle, used to query the price of tokens in order to calculate fee conversions.
Currently only supports Jupiter as a price source.

State Module (state)
This module stores the global state of the Kora system, consisting of two parts:

The global config, containing the configuration parameters specified in the config file.
The global signer pool, containing the list of signers along with all parameters necessary to implement the signer selection
strategy.

The module implements functions to initialize the config and signer pool and access their information, and is called by multiple
modules to access Kora's internal state.

Usage Limit Module (usage_limit)
This module implements a usage limiter, which if enabled will track usage via a Redis cache and limit the number of transactions that
can be submitted by the same sender. The usage limiter is initialized by the rpc_server module, and called by the same module
before signing a user-submitted transaction to check if the limit has been reached (and increment the user's usage tracking counter if
not). Currently, the only form of usage limit supported is one where there is a fixed maximum number of transactions per user. Once a
wallet reaches this maximum, it cannot submit any more transactions.

30/73

Findings
This section contains all issues identified during the audit that could lead to unintended behavior, security vulnerabilities, or failure to
enforce the protocol’s intended logic. Each issue is documented with a description, potential impact, and recommended remediation
steps.

31/73

[A01] Early return in initialize_atas_with_chunk_size()
when an address has no ATAs to create

Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

In the function initialize_atas_with_chunk_size() in admin/token_util.rs , inside the for loop that iterates over the
addresses for which to create ATAs, if the list of ATAs to create for an address is empty, the function will return early without creating
ATAs for the remaining addresses:

Since the function returns successfully, execution will proceed as if ATAs had been created for all addresses, even though this is not
the case.

Recommendation
Instead of returning, continue execution with the next iteration of the loop, either by using continue or by putting the call to
create_atas_for_signer in an else block.

Status
Commit dd3458c updates initialize_atas_with_chunk_size to use continue instead of returning when the list of ATAs to create
for an address is empty. Additionally, new messages are added to create_atas_for_signer when an ATA creation request fails,
clarifying which ATAs have been successfully created before the failure.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/admin/token_util.rs
Line 94 to 97 in c2843ac

9494 ifif atas_to_create atas_to_create..is_emptyis_empty(()) {{

9595 println!println!(("✓ All required ATAs already exist for address: {address}""✓ All required ATAs already exist for address: {address}"));;
9696 returnreturn OkOk(((())));;

9797 }}

32/73

https://github.com/solana-foundation/kora/commit/dd3458c846d0a8b54b9b74684ad5e26267144ad4#diff-7cded32f9ba25ae94056767bcdb715c65d1f8e5133683c3295fc94751dc5b6adR102
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/admin/token_util.rs#L94-L97
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/admin/token_util.rs#L94-L97
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/admin/token_util.rs#L94-L97

[A02] process_token_transfer return values have conflicting
meanings

Severity: Low Difficulty: Low Recommended Action: Fix Design Addressed by client

process_token_transfer in token/token.rs currently returns Ok(false) for a given transaction in two different cases:

When no payment is found to the expected destination account with a value greater than or equal to the required lamport amount.
When a payment is found to the expected destination account using an unsupported payment token.

This leads to two issues:

Since it also returns Ok(true) if it finds a valid payment of at least the required lamport amount, if the transaction includes both a
valid payment and a payment using an unsupported payment token (both to the expected destination account), the return value
will depend entirely on which one happens first.
If the function returns Ok(false) , it's unclear whether it is because the transaction lacks the required payment amount or
because there was a transfer using an unsupported payment token. This means, for example, that the error message in
validate_token_payment might be inaccurate if it's the latter case:

Recommendation
In conversation with the Kora team, it was established that a token transfer to the expected destination account using an unsupported
payment token not cause an early return, and should instead just be ignored so that we can continue searching for a valid payment.
Additionally, the following modifications should be considered:

Allow payments to be made in multiple transfers. In other words, if there are multiple token transfers of supported payment tokens
to the expected destination account, these should be summed to count towards the required lamport amount.
Split the check for validate_token2022_extensions_for_payment into its own function, and add this to validate_transaction
in validator/transaction_validator.rs .
Add an additional function to validate_transaction that checks if all token transfers are for tokens in the list of allowed tokens.

Status
PR #240 renames process_token_transfer to verify_token_payment and updates the function to ignore transfers using
unsupported tokens rather than returning early. The function has also been updated to sum the total value of all payments in supported
tokens, rather than returning the first valid one.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/validator/transaction_validator.rs
Line 315 to 317 in c2843ac

315315 ErrErr((KoraErrorKoraError::::InvalidTransactionInvalidTransaction((format!format!((

316316 "Insufficient token payment. Required {required_lamports} lamports""Insufficient token payment. Required {required_lamports} lamports"

317317))))))

33/73

https://github.com/solana-foundation/kora/pull/240/files#diff-12560d1eaa6a825edb463f0c165f30f89c4a13e3c1120116cd8e84a391cdbe36
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L315-L317
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L315-L317
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L315-L317

[A03] Payment instruction detection uses first-match logic
instead of aggregation

Severity: Low Difficulty: Low Recommended Action: Fix Design Addressed by client

The has_payment_instruction function in

implements a flawed first-match detection logic that prevents valid multi-transfer payment scenarios from being properly recognized.

The function returns Ok(0) immediately upon detecting any transfer to the payment destination, without validating the transfer
amount or aggregating multiple transfers to the same destination. This causes valid multi-transfer payments to be rejected when
individual transfers are insufficient, but their collective sum would meet the payment requirement.

This prevents users from executing legitimate payments that use multiple transfers from different token accounts, resulting in
transaction failures for valid payment scenarios that the protocol should support.

Recommendation
Modify the payment detection logic to aggregate all transfers to the payment destination.
Validate the total aggregated amount against the payment requirement.
Add test cases for multi-transfer payment scenarios.
Update process_token_transfer logic to support aggregation as described in [A02] process_token_transfer return values
have conflicting meanings.

Status
As of commit 6b1dd87, has_payment_instruction has been merged with calculate_transfer_fees into a single
analyze_payment_instructions function. The function only checks that a payment instruction exists, not that the total of all payment

instructions is sufficient, but this is checked instead in verify_token_payment (see [A02] process_token_transfer return values
have conflicting meanings).

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 173 to 193 in c2843ac

173173 forfor instruction instruction inin resolved_transaction resolved_transaction

174174 ..get_or_parse_spl_instructionsget_or_parse_spl_instructions(())??

175175 ..getget((&&ParsedSPLInstructionTypeParsedSPLInstructionType::::SplTokenTransferSplTokenTransfer))

176176 ..unwrap_orunwrap_or((&&vec!vec![[]]))

177177 {{

178178 ifif letlet ParsedSPLInstructionDataParsedSPLInstructionData::::SplTokenTransferSplTokenTransfer {{ destination_address destination_address,, }} ==

179179 instruction instruction

180180 {{

181181 ifif SelfSelf::::get_payment_instruction_infoget_payment_instruction_info((

182182 rpc_client rpc_client,,

183183 destination_address destination_address,,

184184 &&payment_destinationpayment_destination,,

185185 falsefalse,, // Don't skip missing accounts for has_payment_instruction// Don't skip missing accounts for has_payment_instruction

186186))

187187 ..awaitawait??

188188 ..is_someis_some(())

189189 {{

190190 returnreturn OkOk((00));;

191191 }}

192192 }}

193193 }}

34/73

https://github.com/solana-foundation/kora/pull/223/commits/6b1dd87b320678cac94ed5449913bb0d17c3f9b9
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L173-L193
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L173-L193
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L173-L193

[A04] Integer Overflow in Fee Aggregation
Severity: High Difficulty: High Recommended Action: Fix Code Addressed by client

The final fee summation in estimate_transaction_fee

uses regular addition while individual fee components use saturating arithmetic, creating a critical integer overflow vulnerability that
could enable fund drainage attacks.

The fee components use saturating_add() for protection, but the final aggregation uses standard addition that can overflow. When
fee components sum beyond u64::MAX , the result wraps around to a small value instead of saturating, allowing attackers to process
expensive transactions with minimal fees. Although it's unlikely that the total fee could ever actually reach u64::MAX , it's a good idea
to safeguard against the possibility of exploits that could artificially inflate the fee calculation with the intention of triggering an overflow.

Recommendation
Replace regular addition in the final fee summation with saturating arithmetic to ensure totals near or above u64::MAX safely
saturate rather than wrap around, maintaining consistency with the component-level use of saturating_add() .
Add a test covering overflow across all fee components and validate fee monotonicity so that increasing any element cannot
reduce the total.
Additionally, consider replacing the use of saturating_add with checked_add , allowing the code to detect if an overflow has
occurred and return an error instead of silently defaulting to the maximum value. If an overflow were to occur, this would allow
logging and debugging the circumstances that caused it.

Status
Commit 01f69c2 updates the final sum of the fee in estimate_transaction_fee to use checked_add . PR #248 also updates
calculate_fee_payer_outflow to use checked_add .

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 305 to 310 in c2843ac

305305 letlet total_fee_lamports total_fee_lamports == base_fee base_fee

306306 ++ account_creation_fee account_creation_fee

307307 ++ kora_signature_fee kora_signature_fee

308308 ++ fee_payer_outflow fee_payer_outflow

309309 ++ fee_for_payment_instruction fee_for_payment_instruction

310310 ++ transfer_fee_config_amount transfer_fee_config_amount;;

35/73

https://github.com/solana-foundation/kora/pull/223/commits/01f69c23f59bb72115e7e267c660cbd00d31a306#diff-e9c640da9dae77f8ff9b5dca0600d29d972c4bc52e5d7b3a2fa15ae353755b52
https://github.com/solana-foundation/kora/pull/248/files#diff-e9c640da9dae77f8ff9b5dca0600d29d972c4bc52e5d7b3a2fa15ae353755b52
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L305-L310
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L305-L310
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L305-L310

[A05] RustSec dependency vulnerabilities
Severity: Low Difficulty: Medium Addressed by client

Three RustSec vulnerabilities were identified: curve25519-dalek timing side-channel (RUSTSEC-2024-0344), ed25519-dalek double
public key signing oracle (RUSTSEC-2022-0093), and Borsh unsoundness (RUSTSEC-2023-0033). All are transitive dependencies
via the Solana SDK, requiring coordinated upgrades.

Recommendation
Plan dependency upgrades to curve25519-dalek >= 4.1.3, ed25519-dalek >= 2.0, and borsh >=1.0, coordinated with Solana SDK
updates.

Status
PR #242 upgrades the dependencies to the latest version and removes outdated dependencies.

36/73

https://github.com/solana-foundation/kora/pull/242

[A06] Double counting of ATA rent fees during fee estimation
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

The estimate_transaction_fee function in fee.rs calls get_associated_token_account_creation_fees to calculate fees
associated with paying the rent of any ATAs created by the transaction:

However, it also later calls calculate_fee_payer_outflow to account for general calls to the System Program that need to be paid by
the fee payer, which includes account creation:

Since ATA creation involves an account creation call to the System Program, ATA creation rent fees will be double counted in the fee
calculation.

Recommendation
Modify the code so that ATA rent fees are accounted for in only one place.

Status
Commit 01f69c2 removes the get_associated_token_account_creation_fees function, so that account creation fees are added only
during the fee payer outflow calculation.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 276 to 280 in c2843ac

276276 // Get account creation fees (for ATA creation)// Get account creation fees (for ATA creation)

277277 letlet account_creation_fee account_creation_fee ==

278278 FeeConfigUtilFeeConfigUtil::::get_associated_token_account_creation_feesget_associated_token_account_creation_fees((rpc_clientrpc_client,, transaction transaction))

279279 ..awaitawait

280280 ..map_errmap_err((||ee|| KoraErrorKoraError::::RpcErrorRpcError((ee..to_stringto_string(())))))??;;

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 290 to 292 in c2843ac

290290 // Calculate fee payer outflow if fee payer is provided, to better estimate the potential fee// Calculate fee payer outflow if fee payer is provided, to better estimate the potential fee

291291 letlet fee_payer_outflow fee_payer_outflow ==

292292 FeeConfigUtilFeeConfigUtil::::calculate_fee_payer_outflowcalculate_fee_payer_outflow((fee_payerfee_payer,, transaction transaction))..awaitawait??;;

37/73

https://github.com/solana-foundation/kora/pull/223/commits/01f69c23f59bb72115e7e267c660cbd00d31a306
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L276-L280
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L276-L280
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L276-L280
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L290-L292
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L290-L292
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L290-L292

[A07] Unsafe unwrap() calls in production code
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

Several places in the production code call unwrap() on an Option type. This will cause a panic if the value is None . Examples of
functions that use unwrap() include:

get_required_lamports

get_or_parse_system_instructions

get_or_parse_spl_instructions

validate_token2022_extensions_for_payment

encode_versioned_transaction

validate_with_result_and_signers

Recommendation
Replace the unwrap() calls with proper error handling.

Status
Commit 01f69c2 removes calls to unwrap() and replaces them with appropriate error handling. The only remaining uses of
unwrap() are in tests, in the openapi module, and one instance in transaction/instruction_utils.rs that is safe because the

program logic guarantees the value will not be None (and there is a comment in the code documenting this). PR #248 also removes
uses of expect() , which can likewise panic.

38/73

https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/price.rs#L43
https://github.com/solana-foundation/kora/blob/ece4b9b655a471e4309a914540e66bf04c4b4779/crates/lib/src/transaction/versioned_transaction.rs#L194
https://github.com/solana-foundation/kora/blob/ece4b9b655a471e4309a914540e66bf04c4b4779/crates/lib/src/transaction/versioned_transaction.rs#L203
https://github.com/solana-foundation/kora/blob/ece4b9b655a471e4309a914540e66bf04c4b4779/crates/lib/src/token/token.rs#L162
https://github.com/solana-foundation/kora/blob/ece4b9b655a471e4309a914540e66bf04c4b4779/crates/lib/src/transaction/transaction.rs#L51
https://github.com/solana-foundation/kora/blob/ece4b9b655a471e4309a914540e66bf04c4b4779/crates/lib/src/validator/config_validator.rs#L215
https://github.com/solana-foundation/kora/pull/223/commits/01f69c23f59bb72115e7e267c660cbd00d31a306
https://github.com/solana-foundation/kora/pull/248/files

[A08] Fee payer policy is maximally permissive by default
Severity: Medium Difficulty: Medium Recommended Action: Fix Code Addressed by client

The default implementation of FeePayerPolicy sets all options to true , making it maximally permissive:

This can be a security risk if a Kora operator accidentally forgets to add the fee payer section to the config file, as it would expose
them to users using the fee payer account in potentially undesirable ways.

Recommendation
Change the default so that all options are set to false if there is no fee payer policy specified in the config file.

Status
PR #240 sets the default of all fee policy configurations to false .

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/config.rs
Line 148 to 160 in c2843ac

148148 implimpl DefaultDefault forfor FeePayerPolicyFeePayerPolicy {{

149149 fnfn defaultdefault(()) ->-> SelfSelf {{

150150 SelfSelf {{

151151 allow_sol_transfers allow_sol_transfers:: truetrue,,

152152 allow_spl_transfers allow_spl_transfers:: truetrue,,

153153 allow_token2022_transfers allow_token2022_transfers:: truetrue,,

154154 allow_assign allow_assign:: truetrue,,

155155 allow_burn allow_burn:: truetrue,,

156156 allow_close_account allow_close_account:: truetrue,,

157157 allow_approve allow_approve:: truetrue,,

158158 }}

159159 }}

160160 }}

39/73

https://github.com/solana-foundation/kora/pull/240/files#diff-f75f5a0df893f7855b23ce262dc751ad4d339d34cbd44c3cd187a432382bb066
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/config.rs#L148-L160
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/config.rs#L148-L160
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/config.rs#L148-L160

[A09] Fixed pricing model does not require user to pay back
fee payer outflow

Severity: High Difficulty: Medium Recommended Action: Fix Design Addressed by client

When using the fixed pricing model, the fee payer outflow is not accounted for in the fee calculation. This means that a user can
submit a transaction that forces Kora to spend up to the maximum amount of allowed lamports without having to pay it back. This is
especially dangerous if the fee payer policy allows for SOL transfers, since it would allow users to drain funds from Kora to their own
account.

Recommendation
Make sure this is clearly documented regarding the fixed pricing model, and add warnings (or possibly even errors) during config
validation if the fixed pricing model is used together with dangerous options, such as allow_sol_transfers or with no
authentication.

Additionally, consider generalizing the price model to allow certain fee components, like fee payer outflow, to be included even when
using the fixed pricing model.

Status
PR #240 adds warnings to the config validator if the fixed pricing model is used with no authentication enabled or
SOL/SPL/Token2022 transfers allowed in the fee payer policy.
PRs #243 adds warning to operators in the documentation that fixed and free pricing models do not include fee payer
outflow, and therefore are under risk of the fee payer account being drained if the fee payer policy allows transfers.
PR #244 adds a strict flag to the fixed pricing model. If this flag is set, the new function
validate_strict_pricing_with_fee rejects transactions for which the estimated amount in fees that Kora would need to pay

exceeds the price.
PR #246 adds additional documentation on the risks of enabling transfers and other privileged operations.

40/73

https://github.com/solana-foundation/kora/pull/240/files#diff-9ead36a5ee14d81399ba1fa8ebd826012d9dfc1584887cbece7c4ad8ae4c211c
https://github.com/solana-foundation/kora/pull/243
https://github.com/solana-foundation/kora/pull/244
https://github.com/solana-foundation/kora/pull/246

[A10] SPL token transfers are not accounted for in fee payer
outflow

Severity: High Difficulty: Medium Recommended Action: Fix Design Addressed by client

calculate_fee_payer_outflow in fee/fee.rs adds up all SOL transfers in order to charge the user for those as part of the fee (as
long as the pricing model is margin , see [A09] Fixed pricing model does not require user to pay back fee payer outflow). However, it
doesn't account for SPL token transfers. Therefore, if the fee payer holds any SPL tokens and the fee payer policy allows token
transfers, a user can submit a transaction that transfers tokens out of the fee payer's ATA without having to pay them back.

Note that if the payment address is equal to the fee payer, this includes the tokens transferred by the user to pay Kora's fees. In other
words, a user would be able to pay the fees and then immediately transfer the tokens back in the same transaction.

Recommendation
Include token transfers in the fee payer outflow calculation, charging the user for the amount transferred.

Status
Commit 5a61ea1 adds the function calculate_spl_transfers_value_in_lamports to token/token.rs and calls it in
calculate_fee_payer_outflow to calculate the value in SOL of the SPL outflow.

41/73

https://github.com/solana-foundation/kora/pull/223/commits/5a61ea1158f35aab1cc64729c2abf9fab16c5418

[A11] Access control missing for unsupported SPL
instructions

Severity: Medium Difficulty: Medium Recommended Action: Fix Code Addressed by client

The validate_fee_payer_usage function enforces policy only on SPL Transfer , Approve , Burn , and CloseAccount operations.
Other SPL Token instructions such as MintTo , FreezeAccount , Revoke , SetAuthority , and ThawAccount are not checked and
will bypass fee payer policy restrictions if included in a transaction with the SPL Token program in allowed_programs . Although it's
considered unlikely that the fee payer will have the authority to perform these kinds of instructions, it could lead to significant security
problems if they did.

Recommendation
Extend validate_fee_payer_usage to cover all SPL Token instructions that impact fee payer usage or token state.
Add validation for MintTo, FreezeAccount, Revoke, SetAuthority, ThawAccount, and checked versions.
Use ParsedSPLInstructionType or extend it to parse and enforce these additional instruction types.

Status
Commit 8a46b97 adds the other SPL token instructions to parse_token_instructions , both for standard SPL tokens and Token2022
tokens. Macros validate_spl and validate_spl_multisig have been added to check if the instructions conform to the fee payer
policy, and are called in validate_fee_payer_usage .

42/73

https://github.com/solana-foundation/kora/pull/223/commits/8a46b975787125944cad1985ad32cd3e426531c6

[A12] Non-constant-time comparison of HMAC signatures
Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

The HMAC authentication

compares the provided signature to the expected signature using standard string equality. This comparison isn't guaranteed to execute
in constant time, which can introduce a timing side-channel. Requests with more matching prefix bytes take slightly longer. Over many
samples, an attacker can average timings to guess the next byte.

Recommendation
Replace the non-constant-time string comparison with a constant-time verification method.

Status
Commit 4319320 replaces the string comparison with the hmac crate's verify_slice function, which performs constant-time
comparison.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/auth.rs
Line 187 to 189 in c2843ac

187187 ifif signature signature !=!= expected_signature expected_signature {{

188188 returnreturn OkOk((unauthorized_responseunauthorized_response));;

189189 }}

43/73

https://github.com/solana-foundation/kora/pull/223/commits/4319320095c3b1afcdcfa733e6e95ff7cd2f6799#diff-4a56555b6cf1d947269808c1309362e47921ade740207b4182c45ee1fabbda1a
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L187-L189
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L187-L189
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L187-L189

[A13] API key comparison vulnerable to timing attacks
Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

The API key authentication middleware in

compares the provided API key to the expected key using Rust's standard equality operator (==), which is not guaranteed to execute
in constant time. String comparison typically short-circuits on the first differing byte, creating a timing side-channel that could allow
attackers to infer the correct API key byte-by-byte.

Recommendation
Use constant-time comparison for API key validation.

Status
PR #240 updates the authentication to use the ct_eq constant-time comparison method from the subtle crate.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/auth.rs
Line 68 to 70 in c2843ac

6868 ifif letlet SomeSome((provided_keyprovided_key)) == req req..headersheaders(())..getget((X_API_KEYX_API_KEY)) {{

6969 ifif provided_key provided_key..to_strto_str(())..unwrap_orunwrap_or(("""")) ==== api_key api_key {{

7070 returnreturn inner inner..callcall((reqreq))..awaitawait;;

44/73

https://github.com/solana-foundation/kora/pull/240/files#diff-4a56555b6cf1d947269808c1309362e47921ade740207b4182c45ee1fabbda1a
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L68-L70
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L68-L70
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L68-L70

[A14] Panic on invalid UTF-8 in HMAC authentication
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

The HMAC authentication

uses std::str::from_utf8(&body_bytes).unwrap() when constructing the HMAC message. If an attacker sends a request body
containing invalid UTF-8 sequences and includes headers X_TIMESTAMP (parsable as a recent UNIX timestamp) and
X_HMAC_SIGNATURE , the unwrap() will panic.

Recommendation
Replace the unwrap() on UTF-8 conversion with safe error handling.
Use std::str::from_utf8(&body_bytes).ok() to detect and reject invalid UTF-8.

Status
PR #240 updates the HMAC signature verification to gracefully handle errors in the decoding, returning the UNAUTHORIZED status
code instead of panicking.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/auth.rs
Line 174 in c2843ac

174174 letlet message message == format!format!(("{}{}""{}{}",, timestamp timestamp,, stdstd::::strstr::::from_utf8from_utf8((&&body_bytesbody_bytes))..unwrapunwrap(())));;

45/73

https://github.com/solana-foundation/kora/pull/240/files#diff-4a56555b6cf1d947269808c1309362e47921ade740207b4182c45ee1fabbda1a
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L174
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L174
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/auth.rs#L174

[A15] DoS via Unbounded Request Body Buffering
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

The middleware in

has no size limit on request body buffering, affecting all RPC requests, including API key authentication, HMAC authentication, and
metrics endpoints. This creates a potential denial of service vulnerability where attackers can exhaust server memory by sending
extremely large request bodies.

Recommendation
Add request body size limits to the middleware.

Status
Commit 8d4f172 introduces a max request body size, with a default of 2 MB, which can be configured to a custom value in the config
file.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/middleware_utils.rs
Line 12 to 20 in c2843ac

1212 letlet ((partsparts,, body body)) == request request..into_partsinto_parts(());;

1313 letlet body_bytes body_bytes == body body

1414 ..try_foldtry_fold((VecVec::::newnew(()),, ||mutmut acc acc,, chunk chunk|| asyncasync movemove {{

1515 acc acc..extend_from_sliceextend_from_slice((&&chunkchunk));;

1616 OkOk((accacc))

1717 }}))

1818 ..awaitawait

1919 ..unwrap_or_defaultunwrap_or_default(());;

2020 ((partsparts,, body_bytes body_bytes))

46/73

https://github.com/solana-foundation/kora/pull/223/commits/8d4f172825b15aa364a7010c3e63e89b27603175
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/middleware_utils.rs#L12-L20
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/middleware_utils.rs#L12-L20
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/middleware_utils.rs#L12-L20

[A16] Redis Password Exposure in Logs
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

The Redis connection initialization logs the full Redis URL

including credentials, potentially exposing passwords in log files. This occurs when the Redis URL contains authentication information
in the format redis://user:password@host:port .

Recommendation
Sanitize Redis URL before logging.

Status
Commit ef8fc5a introduces a sanitize_error! macro that redacts certain patterns in error messages, in particular those
corresponding to URLs with credentials and hex strings that can potentially be private keys. The macro is used for errors in high-risk
modules that deal with private keys and authentication. The sanitation is performed as long as the unsafe-debug option is not turned
on in the Cargo.toml file. In addition, some error messages (including the one above) were modified to remove potentially-sensitive
information entirely, and the Debug trait was removed from data structures that might contain sensitive information.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/cache.rs
Line 54 in c2843ac

5454 loglog::::info!info!(("Cache initialized successfully with Redis at {redis_url}""Cache initialized successfully with Redis at {redis_url}"));;

47/73

https://github.com/solana-foundation/kora/pull/223/commits/ef8fc5a6d699d9fbb80ef5b7175c383ab2d925f0#diff-37434bfa95f1eab118e0604b5d14bcd8ac21fbf14a559439de5b29a0dd5902c2
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/cache.rs#L54
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/cache.rs#L54
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/cache.rs#L54

[A17] Debug Trait Exposes Sensitive Data in Signer Structs
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

Multiple signer structs derive the Debug trait, which exposes sensitive fields when logging or printing debug information. This risks
leaking API secrets, private keys, and key pairs in logs or error messages.

Recommendation
Remove Debug trait from sensitive signer structs or implement a custom Debug that redacts sensitive fields.

Status
As of PR #233, the signer module now uses the new solana-signers library, where the signer data structures no longer derive the
Debug trait.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/signer/privy/types.rs
Line 5 to 8 in c2843ac

55 #[derive(Clone, Debug)]#[derive(Clone, Debug)]

66 pubpub structstruct PrivySignerPrivySigner {{

77 pubpub app_id app_id:: StringString,,

88 pubpub app_secret app_secret:: StringString,,

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/signer/turnkey/types.rs
Line 4 to 9 in c2843ac

44 #[derive(Clone, Debug)]#[derive(Clone, Debug)]

55 pubpub structstruct TurnkeySignerTurnkeySigner {{

66 pubpub organization_id organization_id:: StringString,,

77 pubpub private_key_id private_key_id:: StringString,,

88 pubpub api_public_key api_public_key:: StringString,,

99 pubpub api_private_key api_private_key:: StringString,,

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/signer/memory_signer/solana_signer.rs
Line 12 to 14 in c2843ac

1212 #[derive(Debug)]#[derive(Debug)]

1313 pubpub structstruct SolanaMemorySignerSolanaMemorySigner {{

1414 keypair keypair:: KeypairKeypair,,

48/73

https://github.com/solana-foundation/kora/pull/223/files#diff-95ccf1be3524978db37501b4ff9bf1b599d7862b569079ecf7055bb6e6281d7e
https://github.com/solana-foundation/solana-signers
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/privy/types.rs#L5-L8
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/privy/types.rs#L5-L8
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/privy/types.rs#L5-L8
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/turnkey/types.rs#L4-L9
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/turnkey/types.rs#L4-L9
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/turnkey/types.rs#L4-L9
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/memory_signer/solana_signer.rs#L12-L14
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/memory_signer/solana_signer.rs#L12-L14
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/signer/memory_signer/solana_signer.rs#L12-L14

[A18] System Instructions Bypass in Fee Payer Policy
Severity: Medium Difficulty: Medium Recommended Action: Fix Design Addressed by client

The validate_fee_payer_usage function in transaction_validator.rs

parses SystemCreateAccount and SystemWithdrawNonceAccount instructions but does not validate them against the fee payer
policy. This allows attackers to include these instructions that use the fee payer as a funding source or authority, potentially draining
SOL balances.

The validation function implements policy checks for only two system instruction types: SystemTransfer and SystemAssign . The
SystemCreateAccount and SystemWithdrawNonceAccount instructions are parsed in instruction_util.rs and passed to the

validation function, but no corresponding validation loops exist to enforce fee payer policy restrictions on these instruction types.

Although the fee payer outflow calculation accounts for these instructions and charges them back to the user, they still might not be
desirable, and an operator may want to block them entirely through the fee payer policy. This is especially the case as the fee payer
outflow is not applied outside of the margin pricing model (see [A09] Fixed pricing model does not require user to pay back fee payer
outflow).

Recommendation
Add validation for both system instructions in the fee payer policy.

Status
Commit 8a46b97 adds options to the fee payer policy for all system instructions and wraps their validation in the validate_system!
macro.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/validator/transaction_validator.rs
Line 188 to 202 in c2843ac

188188 forfor instruction instruction inin

189189 system_instructions system_instructions..getget((&&ParsedSystemInstructionTypeParsedSystemInstructionType::::SystemTransferSystemTransfer))..unwrap_orunwrap_or((&&vec!vec![[]]))

190190 {{

191191 ifif letlet ParsedSystemInstructionDataParsedSystemInstructionData::::SystemTransferSystemTransfer {{ sender sender,, }} == instruction instruction {{

192192 check_if_allowedcheck_if_allowed((sendersender,, selfself..fee_payer_policyfee_payer_policy..allow_sol_transfersallow_sol_transfers))??;;

193193 }}

194194 }}

195195

196196 forfor instruction instruction inin

197197 system_instructions system_instructions..getget((&&ParsedSystemInstructionTypeParsedSystemInstructionType::::SystemAssignSystemAssign))..unwrap_orunwrap_or((&&vec!vec![[]]))

198198 {{

199199 ifif letlet ParsedSystemInstructionDataParsedSystemInstructionData::::SystemAssignSystemAssign {{ authority authority }} == instruction instruction {{

200200 check_if_allowedcheck_if_allowed((authorityauthority,, selfself..fee_payer_policyfee_payer_policy..allow_assignallow_assign))??;;

201201 }}

202202 }}

49/73

https://github.com/solana-foundation/kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/instruction_util.rs
https://github.com/solana-foundation/kora/pull/223/commits/8a46b975787125944cad1985ad32cd3e426531c6#diff-14924e7a2617beffc4a219ef1736f9a4f6ce524651369e99dc5f237f2e8c5ff2
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L188-L202
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L188-L202
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/transaction_validator.rs#L188-L202

[A19] Jupiter price oracle lacks validation
Severity: High Difficulty: Medium Recommended Action: Fix Code Addressed by client

The Jupiter API price oracle integration in

fetches token prices from Jupiter's API but performs no validation on the returned data.

The implementation accepts any price without checking for staleness (age of price data), extreme values (bounds checking), or
confidence thresholds. This creates potential attack vectors through price manipulation and exposes operators to operational risks
from stale or unreliable price feeds.

Recommendation
Add comprehensive price validation to the Jupiter oracle.

Status
PR #240 adds the validate_price_data function, which performs a sanity check to ensure that the oracle prices are within
reasonable bounds. Jupiter's API has no easy way to check for staleness of the data, so node operators are required to accept the
associated risks of using Jupiter.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/oracle/jupiter.rs
Line 34 to 45 in c2843ac

3434 structstruct JupiterPriceDataJupiterPriceData {{

3535 #[serde(rename = #[serde(rename = "usdPrice""usdPrice")])]

3636 usd_price usd_price:: f64f64,,

3737 #[serde(rename = #[serde(rename = "blockId""blockId")])]

3838 #[allow(dead_code)]#[allow(dead_code)]

3939 block_id block_id:: u64u64,,

4040 #[allow(dead_code)]#[allow(dead_code)]

4141 decimals decimals:: u8u8,,

4242 #[serde(rename = #[serde(rename = "priceChange24h""priceChange24h")])]

4343 #[allow(dead_code)]#[allow(dead_code)]

4444 price_change_24h price_change_24h:: OptionOption<<f64f64>>,,

4545 }}

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/oracle/jupiter.rs
Line 154 to 156 in c2843ac

154154 letlet price price == price_data price_data..usd_price usd_price // sol_price sol_price..usd_priceusd_price;;

155155

156156 OkOk((TokenPriceTokenPrice {{ price price,, confidence confidence:: 0.950.95,, source source:: PriceSourcePriceSource::::JupiterJupiter }}))

50/73

https://github.com/solana-foundation/kora/pull/240/files#diff-4a56555b6cf1d947269808c1309362e47921ade740207b4182c45ee1fabbda1a
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L34-L45
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L34-L45
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L34-L45
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L154-L156
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L154-L156
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/oracle/jupiter.rs#L154-L156

[A20] Unchecked array indexing in instruction account access
Severity: Medium Difficulty: Low Recommended Action: Fix Code Addressed by client

Multiple locations in the codebase perform direct array indexing into instruction.accounts without first validating that the array has
sufficient elements. This can cause panics if a malformed or unexpected instruction is processed, leading to denial of service or
service crashes.

instruction_util has similar patterns throughout the file.

Recommendation
Add bounds checking before array indexing.

Status
Commit 5da4f28 adds the validate_number_accounts! macro, which can be used to check whether the length of the account array
for an instruction matches the required number of accounts. This macro is used in transaction/instruction_util.rs before every
array access into instruction.accounts .

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 73 to 81 in c2843ac

7373 forfor instruction instruction inin &&transactiontransaction..all_instructions all_instructions {{

7474 // Skip if not an ATA program instruction// Skip if not an ATA program instruction

7575 ifif instruction instruction..program_id program_id !=!= spl_associated_token_accountspl_associated_token_account::::idid(()) {{

7676 continuecontinue;;

7777 }}

7878

7979 letlet ata ata == instruction instruction..accountsaccounts[[11]]..pubkeypubkey;;

8080 letlet owner owner == instruction instruction..accountsaccounts[[22]]..pubkeypubkey;;

8181 letlet mint mint == instruction instruction..accountsaccounts[[33]]..pubkeypubkey;;

51/73

https://github.com/solana-foundation/kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/instruction_util.rs
https://github.com/solana-foundation/kora/commit/5da4f28b57aba4af27d350563a08190f7fc098bc#diff-9596b5c34164a095f28aa9a78c2d13bc1904ac1b0f4d574242ddb9109973f125
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L73-L81
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L73-L81
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L73-L81

[A21] Permanent Delegate extension can be used to undo
payments to Kora

Severity: High Difficulty: High Recommended Action: Document Prominently Addressed by client

The Permanent Delegate Token 2022 extension allows a token to define a delegate with global authority to transfer, burn or freeze
tokens from any accounts associated with the token. Therefore, interacting with such a token would carry significant risk to a Kora
node:

If a node were to allow fee payments in such a token, the delegate would be able to undo the payment by sending the tokens
back.
Even if the token is not used as a payment token, if the fee payer outflow accounts for token transfers (as per [A10] SPL token
transfers are not accounted for in fee payer outflow) it could be transferred to Kora to reduce the outflow, only for the delegate to
transfer the tokens back later.

Recommendation
It is important for Kora operators to be aware of the risks of allowing tokens with the Permanent Delegate extension to be used. They
should not be used for payment tokens, and even just allowing them as an allowed token can be dangerous. These dangers should be
explicitly documented in the documentation for operators. Additionally, it would be advisable to emit a warning during config validation
if the Permanent Delegate is configured as an allowed extension.

Status
PR #240 adds a warning to validate_with_result_and_signers in validator/config_validator.rs that warns about the
risks of the Permanent Delegate extension if it's not blocked.
PR #243 adds a "Security Consideration" subsection under "Token-2022 Extension Blocking" in CONFIGURATION.md , warning the
operator about the extension.
PR #244 adds a check_token_mint_extensions function to validator/config_validator.rs , which checks if any allowed
tokens include risky extensions (including Permanent Delegate) and reports those as warnings to the user.

52/73

https://solana.com/docs/tokens/extensions/permanent-delegate
https://github.com/solana-foundation/kora/pull/240/files#diff-9ead36a5ee14d81399ba1fa8ebd826012d9dfc1584887cbece7c4ad8ae4c211c
https://github.com/solana-foundation/kora/pull/243/files#diff-bf33b828e9682b4cef9deb3f08b300455d818146c48ec971e95d422e3a9803f9
https://github.com/solana-foundation/kora/pull/244/files#diff-9ead36a5ee14d81399ba1fa8ebd826012d9dfc1584887cbece7c4ad8ae4c211c

[A22] sign_transaction and sign_and_send_transaction
allow transactions to be submitted for free independently of
the price model

Severity: High Difficulty: Medium Recommended Action: Fix Design Addressed by client

The sign_transaction method implemented in rpc_server/method/sign_transaction.rs allows users to request transactions to
be signed by Kora without paying any fees, in contrast to sign_transaction_if_paid . This is redundant since if it's desired that
users can submit transactions for free, the operator can set the price model to "free" in the config. Additionally, it opens the possibility
for operators that do intend to charge fees to accidentally leave this method enabled, thus allowing users to bypass the fees and
submit transactions for free.

Additionally, the sign_and_send_transaction method implemented in rpc_server/method/sign_transaction_and_submit.rs
doesn't check that fees are being paid either, so it also can't be used together with a non-free price model.

Recommendation
Remove the sign_transaction method, since its only legitimate use case can be covered by setting the price model to "free."
Turn sign_and_send_transaction into sign_and_send_transaction_if_paid , adding validation that the payment is included in
the submitted transaction.

Status
PR #241 removes the sign_transaction_if_paid method and instead modifies the sign_transaction function in
transaction/versioned_transaction.rs (which is used by both the sign_transaction and sign_and_send_transaction RPC

methods) to require payment.

53/73

https://github.com/solana-foundation/kora/pull/241

[A23] Only first transfer fee is added to the Kora fee
Severity: High Difficulty: Low Recommended Action: Fix Code Addressed by client

The function calculate_transfer_fees in fee/fee.rs returns as soon as a transfer is found for a token with a transfer fee
configured:

However, a transaction can have multiple such transfer instructions. In that case, only the first transfer fee would be added to the total
fee charged to the user. This would allow a user to submit a transaction with multiple transfers and only pay the fees for the first one,
forcing Kora to pay for all of the other transfers.

Recommendation
Fix the code so that, instead of returning early, the function adds up the fees for all transfer instructions and returns the total at the
end.

Status
Commit 6b1dd87 updates the function to accumulate all Token2022 transfer fees and return the total fee, instead of returning only the
first one.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/fee/fee.rs
Line 246 to 257 in c2843ac

246246 // For Token2022, check for transfer fees// For Token2022, check for transfer fees

247247 ifif letlet SomeSome((token2022_minttoken2022_mint)) ==

248248 mint_state mint_state..as_anyas_any(())..downcast_refdowncast_ref::::<<Token2022MintToken2022Mint>>(())

249249 {{

250250 letlet current_epoch current_epoch == rpc_client rpc_client..get_epoch_infoget_epoch_info(())..awaitawait??..epochepoch;;

251251

252252 ifif letlet SomeSome((fee_amountfee_amount)) ==

253253 token2022_mint token2022_mint..calculate_transfer_feecalculate_transfer_fee((**amountamount,, current_epoch current_epoch))

254254 {{

255255 returnreturn OkOk((fee_amountfee_amount));;

256256 }}

257257 }}

54/73

https://github.com/solana-foundation/kora/pull/223/commits/6b1dd87b320678cac94ed5449913bb0d17c3f9b9
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L246-L257
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L246-L257
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/fee/fee.rs#L246-L257

Informative Findings
This section includes observations that are not directly exploitable but highlight areas for improvement in code clarity, maintainability,
or best practices. While not critical, addressing these can strengthen the system's overall robustness.

55/73

[B01] Error message in validate_account_type only
considers one of the possible error cases

Severity: Informative Recommended Action: Fix Code Addressed by client

The function validate_account_type in validator/account_validator.rs returns an error if an account's executable flag has a
different value than it should based on the expected account type:

However, the error message only refers to the case when a Program , which should be executable, is not. But this error can also be
returned when a Mint or TokenAccount is executable, when it shouldn't. This makes this error message misleading in these cases.

Recommendation
Rewrite the error message to be more generic, or consider both cases separately and return a different error message for each.

Status
PR #240 updates the error message to be more accurate.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/validator/account_validator.rs
Line 92 to 98 in c2843ac

9292 ifif letlet SomeSome((should_be_executableshould_be_executable)) == should_be_executable should_be_executable {{

9393 ifif account account..executable executable !=!= should_be_executable should_be_executable {{

9494 returnreturn ErrErr((KoraErrorKoraError::::InternalServerErrorInternalServerError((format!format!((

9595 "Account {account_pubkey} is not executable, cannot be a Program""Account {account_pubkey} is not executable, cannot be a Program"

9696))))));;

9797 }}

9898 }}

56/73

https://github.com/solana-foundation/kora/pull/240/files#diff-4eadfe018a3c3e43f9267dff7f3c5b3be59b7c871262c6fa0af870bf4493cac6
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/account_validator.rs#L92-L98
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/account_validator.rs#L92-L98
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/validator/account_validator.rs#L92-L98

[B02] CacheValidator::validate has Result return type but
never returns an Err value

Severity: Informative Recommended Action: Fix Code Addressed by client

The validate function in validator/cache_validator.rs has return type Result<(Vec<String>, Vec<String>), String> , but it
only ever returns an Ok value. Any errors or warnings are just added to the two lists wrapped in the Ok value.

Recommendation
Change the return type to just (Vec<String>, Vec<String>) instead of wrapping the value into a Result .

Status
PR #240 modifies validate to no longer wrap the return value in a Result .

57/73

https://github.com/solana-foundation/kora/pull/240/files#diff-de872de79cc0c2789b27b3f1f545f01e38fa6887ddd2b405180ec638788917c1

[B03] If-then-else for Option can be replaced by match
expression

Severity: Informative Recommended Action: Fix Code Addressed by client

The validate function in validator/cache_validator.rs uses an if-then-else pattern to deconstruct usage_config.cache_url ,
which has type Option<String> :

ifif usage_config usage_config..cache_urlcache_url..is_noneis_none(()) {{

}} elseelse ifif letlet SomeSome((cache_urlcache_url)) == &&usage_configusage_config..cache_url cache_url {{

}}

Instead, it can be replaced by a match expression, making it clearer and giving less room for errors:

matchmatch usage_config usage_config..cache_url cache_url {{

 NoneNone =>=>

 SomeSome((refref cache_url cache_url)) =>=>

}}

Status
PR #240 rewrites the if-then-else into a match expression.

58/73

https://github.com/solana-foundation/kora/pull/240/files#diff-de872de79cc0c2789b27b3f1f545f01e38fa6887ddd2b405180ec638788917c1

[B04] Potentially misleading comment about signer selection
strategy

Severity: Informative Recommended Action: Document Prominently Addressed by client

When the get_request_signer_with_signer_key in state.rs calls SignerPool::get_next_signer , the comment says that the
default behavior is to select the next signer from round-robin:

However, before it defaults to round-robin, it will use the strategy specified in the signer pool config if there is one. Only if no strategy is
specified it will default to round-robin.

Recommendation
Rewrite the comment to clarify that it will use the configured strategy, or default to round-robin if none is specified.

Status
PR #240 updates the comment appropriately.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/state.rs
Line 32 to 35 in c2843ac

3232 // Default behavior: use next signer from round-robin// Default behavior: use next signer from round-robin

3333 letlet signer_meta signer_meta == pool pool..get_next_signerget_next_signer(())..map_errmap_err((||ee|| {{

3434 KoraErrorKoraError::::InternalServerErrorInternalServerError((format!format!(("Failed to get signer from pool: {e}""Failed to get signer from pool: {e}"))))

3535 }}))??;;

59/73

https://github.com/solana-foundation/kora/pull/240/files#diff-069dd6ae0e71df44bb3d3bd7a78b8ab6d6f8eb496f55b19f8d8acfbe08eea978
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/state.rs#L32-L35
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/state.rs#L32-L35
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/state.rs#L32-L35

[B05] Spurious fields in SignTransactionResponse and
SignTransactionIfPaidResponse
Severity: Informative Recommended Action: Fix Code Addressed by client

In rpc_server/method/sign_transaction.rs , the sign_transaction function returns a signature in the
SignTransactionResponse data structure:

However, this signature is being taken from transaction rather than signed_transaction , and assumes the fee payer signature is
necessarily in index 0, while the sign_transaction function finds the position of the fee payer in the account list and places the
signature in the corresponding index:

Additionally, in rpc_server/method/sign_transaction_if_paid.rs , the sign_transaction_if_paid function returns a
SignTransactionIfPaidResponse , but the transaction field is assigned in a way that just repeats the contents of the
signed_transaction field:

Both of these fields (signature in SignTransactionResponse and transaction in SignTransactionIfPaidResponse) are
spurious, and the returned values are not being used. Therefore, they can be removed from their respective structs.

Status
PR #240 removes the transaction field from SignTransactionIfPaidResponse (also note that the sign_transaction_if_paid
method was later removed in PR #241). The signature field has also been removed from SignTransactionResponse .

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/method/sign_transaction.rs
Line 55 to 59 in c2843ac

5555 OkOk((SignTransactionResponseSignTransactionResponse {{

5656 signature signature:: transaction transaction..signaturessignatures[[00]]..to_stringto_string(()),,

5757 signed_transaction signed_transaction:: encoded encoded,,

5858 signer_pubkey signer_pubkey:: signer signer..solana_pubkeysolana_pubkey(())..to_stringto_string(()),,

5959 }}))

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/transaction/versioned_transaction.rs
Line 257 to 259 in c2843ac

257257 // Find the fee payer position - don't assume it's at position 0// Find the fee payer position - don't assume it's at position 0

258258 letlet fee_payer_position fee_payer_position == selfself..find_signer_positionfind_signer_position((&&signersigner..solana_pubkeysolana_pubkey(())))??;;

259259 transaction transaction..signaturessignatures[[fee_payer_positionfee_payer_position]] == signature signature;;

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/rpc_server/method/sign_transaction_if_paid.rs
Line 55 to 59 in c2843ac

5555 OkOk((SignTransactionIfPaidResponseSignTransactionIfPaidResponse {{

5656 transaction transaction:: TransactionUtilTransactionUtil::::encode_versioned_transactionencode_versioned_transaction((&&transactiontransaction)),,

5757 signed_transaction signed_transaction,,

5858 signer_pubkey signer_pubkey:: signer signer..solana_pubkeysolana_pubkey(())..to_stringto_string(()),,

5959 }}))

60/73

https://github.com/solana-foundation/kora/pull/240/files#diff-32877feaaf74b966a12bfcee049b5da8e5e0bca6e105977b7182bda7455d4a53
https://github.com/solana-foundation/kora/pull/241
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction.rs#L55-L59
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction.rs#L55-L59
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction.rs#L55-L59
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/versioned_transaction.rs#L257-L259
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/versioned_transaction.rs#L257-L259
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/versioned_transaction.rs#L257-L259
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction_if_paid.rs#L55-L59
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction_if_paid.rs#L55-L59
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/rpc_server/method/sign_transaction_if_paid.rs#L55-L59

[B06] Price model documentation in FEES.md
Severity: Informative Recommended Action: Document Prominently Addressed by client

It's not clear from the FEES.md document that the Fee Calculation Formula only applies when using the margin price model (see
Price Configuration in CONFIGURATION.md), with the fixed model instead charging a fixed price and the free model charging
nothing. Additionally, the last row in the Fee Components table seems to suggest that there is an option to set a fixed amount as the
Price Adjustment component, but this is not true: the margin price model adds a percentage of the calculated fee, while the fixed
price model replaces the entire fee calculation with a fixed value.

Recommendation
Clarify in FEES.md that the Fee Calculation Formula only applies when using the margin price model, documenting that the
other price models are independent of the fee components listed.
Consider adding a price model that allows setting a fixed Price Adjustment component, rather than using a percentage as in the
margin price model. This would make the system more flexible, giving more options to Kora node operators. Otherwise, remove

the mention of this option from the document.

Status
PRs #243 and #246 update the documentation to clarify that the fee calculation formula is specific to the margin price model.

61/73

https://github.com/solana-foundation/kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/docs/operators/FEES.md
https://github.com/solana-foundation/kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/docs/operators/CONFIGURATION.md#price-configuration-optional
https://github.com/solana-foundation/kora/pull/243/files#diff-9af979e75b0c96594686c2b01556f8ee091c00223eed52f91ef69489cacf125b
https://github.com/solana-foundation/kora/pull/246/files#diff-9af979e75b0c96594686c2b01556f8ee091c00223eed52f91ef69489cacf125b

[B07] Unnecessary calculation of transaction fees when using
the fixed price model

Severity: Informative Recommended Action: Fix Code Addressed by client

When using the fixed price model, the estimate_kora_fee function in fees.rs calculates transaction fees (using
estimate_transaction_fee) even though those fees will be ignored later and replaced with the fixed price. This introduces

unnecessary expensive calculations and RPC calls.

Recommendation
Refactor estimate_kora_fee to avoid performing this fee calculation when the price model is set to fixed (note that the function
already returns early for the free price model). It might be worth considering moving the call to estimate_transaction_fee inside
get_required_lamports , since that function already checks the price model.

Status
Commit ec05044 refactors estimate_kora_fee to pattern-match on the price model first and call estimate_transaction_fee only
on the margin case. get_required_lamports is also split into get_required_lamports_with_fixed and
get_required_lamports_with_margin , thus avoiding having to pattern-match again unnecessarily.

62/73

https://github.com/solana-foundation/kora/pull/223/commits/ec050445447bbbb27a7cddcfe0b9ce9d794ee736

[B08] Price source argument being passed as Option
unnecessarily

Severity: Informative Recommended Action: Fix Code Addressed by client

estimate_kora_fee (in fee.rs) and get_required_lamports (in price.rs) take the price_source parameter as an
Option<PriceSource> , but in practice it's always passed a Some (there are tests where it's passed a None , but nowhere in

production code). This complicates the logic of the functions and could potentially lead to issues if they were ever passed a None in
future updates of the code:

1. In get_required_lamports , if price_source is None when the price model is fixed , it will return *amount , which is
supposed to be the fixed price in token base units, but will be interpreted by the caller as the price in lamports.

2. In estimate_kora_fee , if price_source is None , it will not apply the price adjustment.

Recommendation
Change the function signatures so that the price_source parameter is passed as a PriceSource (without being wrapped in an
Option), removing the possibility of receiving a None .

Status
Commit 01f69c2 changes the signature of estimate_kora_fee and get_required_lamports so that price_source is no longer
passed as an Option . The same was also done to the rpc_client parameter in get_required_lamports .

63/73

https://github.com/solana-foundation/kora/pull/223/commits/01f69c23f59bb72115e7e267c660cbd00d31a306

[B09] No validation that authentication is configured
Severity: Informative Recommended Action: Fix Code Addressed by client

As specified in AUTHENTICATION.md , authentication is strongly recommended for production deployments of Kora. However, there is
no check or warning for the operator if authentication is not enabled.

Recommendation
Add a check in ConfigValidator::validate_with_result_and_signers that at least one authentication method is configured, and
return a warning if that's not the case.

Status
PR #240 adds a warning to config validation if authentication is not enabled.

64/73

https://github.com/solana-foundation/kora/pull/240/files#diff-9ead36a5ee14d81399ba1fa8ebd826012d9dfc1584887cbece7c4ad8ae4c211c

[B10] Usage limiter implements a permanent limit that cannot
be reset

Severity: Informative Recommended Action: Document Prominently Addressed by client

The usage_limit module uses a Redis cache to keep a usage counter for each user and prevent users to submit any more
transactions once this counter reaches the maximum limit. There is no way to decrease or reset this usage counter (besides the
clear function, which is meant to only be used in tests), so once a certain wallet reaches the maximum limit, it cannot submit any

more transactions.

Recommendation
Document that the only form of usage limiting currently supported by Kora is a permanent limit, and that this limit cannot be reset once
reached. Therefore, once the limit is reached for a certain wallet, the user will no longer be able to submit any more transactions using
that same wallet.

Status
PR #243 clarifies in CONFIGURATION.md the details of the current usage limiting implementation.

65/73

https://github.com/solana-foundation/kora/pull/243/files#diff-bf33b828e9682b4cef9deb3f08b300455d818146c48ec971e95d422e3a9803f9

[B11] Fee payer policy is not checked during config validation
Severity: Informative Recommended Action: Fix Code Addressed by client

If the fee payer policy is misconfigured, it might allow a user to use the fee payer address in undesirable or unsafe ways. Because of
this, it is recommended to set all options to false unless they are absolutely needed. Despite this, these settings are not checked by
the config_validator module.

Recommendation
Produce warnings during config validation for any fee payer policy options that are set to true , alerting the Kora operator of the
consequences of leaving these options enabled.

Status
PR #244 adds new warnings to the config validation, highlighting the risks for each option on the fee payer policy if enabled.
Additionally, PR #243 adds additional clarifications in the documentation about these risks.

66/73

https://github.com/solana-foundation/kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/docs/operators/CONFIGURATION.md#fee-payer-policy
https://github.com/solana-foundation/kora/pull/244/files#diff-9ead36a5ee14d81399ba1fa8ebd826012d9dfc1584887cbece7c4ad8ae4c211c
https://github.com/solana-foundation/kora/pull/243/files

[B12] Conversion between tokens and lamports uses floating
point arithmetic

Severity: Informative Recommended Action: Fix Code Addressed by client

In token/token.rs , the functions calculate_token_value_in_lamports and calculate_lamports_value_in_token use floating-
point arithmetic to convert between tokens and lamports. For example:

It is generally not recommended to use floating-point arithmetic for price calculations, since floats are prone to precision issues and
can introduce rounding errors in ways that are hard to anticipate.

Recommendation
Rewrite the conversion to use fixed-point rather than floating-point arithmetic, using integers to represent amounts and prices in
lamports or token base units. Follow good practices for fixed-point calculations, such as performing multiplications before divisions
whenever possible to reduce rounding errors, and upcasting to larger integer types when necessary to avoid overflow in intermediate
results.

Status
PR #240 modifies the functions to use the rust_decimal crate for arithmetic. PRs #248 and #252 update the calculations to perform
multiplication before division and use checked math.

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/token/token.rs
Line 105 to 122 in c2843ac

105105 pubpub asyncasync fnfn calculate_token_value_in_lamportscalculate_token_value_in_lamports((

106106 amount amount:: u64u64,,

107107 mint mint:: &&PubkeyPubkey,,

108108 price_source price_source:: PriceSourcePriceSource,,

109109 rpc_client rpc_client:: &&RpcClientRpcClient,,

110110)) ->-> ResultResult<<u64u64,, KoraErrorKoraError>> {{

111111 letlet ((token_pricetoken_price,, decimals decimals)) ==

112112 SelfSelf::::get_token_price_and_decimalsget_token_price_and_decimals((mintmint,, price_source price_source,, rpc_client rpc_client))..awaitawait??;;

113113

114114 // Convert token amount to its real value based on decimals and multiply by SOL price// Convert token amount to its real value based on decimals and multiply by SOL price

115115 letlet token_amount token_amount == amount amount asas f64f64 // 10f6410f64..powipowi((decimals decimals asas i32i32));;

116116 letlet sol_amount sol_amount == token_amount token_amount ** token_price token_price..priceprice;;

117117

118118 // Convert SOL to lamports and round down// Convert SOL to lamports and round down

119119 letlet lamports lamports == ((sol_amount sol_amount ** LAMPORTS_PER_SOLLAMPORTS_PER_SOL asas f64f64))..floorfloor(()) asas u64u64;;

120120

121121 OkOk((lamportslamports))

122122 }}

67/73

https://github.com/solana-foundation/kora/pull/240/files#diff-12560d1eaa6a825edb463f0c165f30f89c4a13e3c1120116cd8e84a391cdbe36
https://github.com/solana-foundation/kora/pull/248/files#diff-12560d1eaa6a825edb463f0c165f30f89c4a13e3c1120116cd8e84a391cdbe36
https://github.com/solana-foundation/kora/pull/252/files
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/token/token.rs#L105-L122
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/token/token.rs#L105-L122
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/token/token.rs#L105-L122

[B13] Signer private key can be accessed outside of signer
pool module

Severity: Informative Recommended Action: Fix Code Addressed by client

Several functions associated with the SignerPool struct in pool.rs return a signer or all signers from the pool. Depending on the
type of signer, the returned values include the signer's private key. While this is intentional, the information flow should be carefully
analyzed to ensure that there is no code path through which a private key can be leaked to the user. Steps can also be taken to
reduce the possible attack surface by restricting which functions and modules have access to the private keys.

Recommendation
Reduce the number of functions that return a signer's private key, and the number of modules that have access to them, as much as
possible. Be careful that code changes don't accidentally expose private key information to the user.

Status
PR #240 removes the get_all_signers function from signer/pool.rs . Functions that previously called get_all_signers have
been modified to instead use get_signer_pool()?.get_signers_info() . PR #248 also increases encapsulation of the signer pool by
restricting visibility of certain components only to the crate level.

68/73

https://github.com/solana-foundation/kora/pull/240/files#diff-4fcc053584b161107d9a836524c5943e116eb80554fb48dc71a56fe854778f78
https://github.com/solana-foundation/kora/pull/248/files

Fuzzing Methodology
Not addressed by client

libfuzzer was chosen as the fuzzing library to develop the fuzzing targets, for its ubiquity and ease of setup/use.

In order to maintain determinism and performance for the fuzzing targets, an implementation of a Solana RPC client that is backed by
LiteSVM was developed that the Kora library uses for the validator that it talks to. LiteSVM is an in-process Solana VM, which allows
the fuzzing targets to be free of any dependency on external processes that Kora would normally need to communicate with.

A set of utilities were made to fuzz randomly over system/spl/spl-2022 instructions for transactions. These instructions are created
using information about the accounts and ATAs in the initial state of the LiteSVM instance to keep the transactions within the space of
valid transactions in the context of Solana validation, since transactions that can't otherwise be validated on-chain wont pose a threat.

The RPC endpoint SignTransactionIfPaid was chosen as the entry point into the fuzzing targets, as it covers most of the pricing
and validation scope in the audit.

69/73

Fuzzing Targets Overview
Not addressed by client

random_bytes
A target that generates completely random bytes for the transaction field of the RPC request and submits it to the Kora server. This
is meant to find anything that causes the server to panic or otherwise behave unpredictably.

invalid_instruction
A target that submits a transaction containing an instruction that should not be allowed based on how the Kora server is configured.
This tries to find any transactions that somehow circumvent the restrictions that the Kora server's configuration has in place in regards
to what instructions are allowed.

balance_check
A target that submits a transaction and - should it be accepted - then checks the balances of the Kora Account/ATAs after execution of
that transaction. This is to ensure that the net difference of the Kora signer's balance is no less than the fee required for the
transaction.

These fuzzing targets can be found on RV's public fork of Kora: https://github.com/runtimeverification/kora on the branches fuzzing
(Based on the pinned commit at the beginning of the audit) and fuzzing-audit-freeze (Based on the Kora team's fixes for the
audit's findings).

70/73

https://github.com/runtimeverification/kora

Fuzzing Findings
Nothing to preview

71/73

[F01] Out of bounds array access
Not addressed by client

The random_bytes target found a transaction payload that triggers an out of bounds array access that was described in [A20]
Unchecked array indexing in instruction account access.

The transaction in question, within an RPC request to Kora:

{{

 "jsonrpc""jsonrpc":: "2.0""2.0",,

 "id""id":: 11,,

 "method""method":: "signTransactionIfPaid""signTransactionIfPaid",,

 "params""params":: {{

 "transaction""transaction":: "AOmQAQBxAYMBASEB/YMBAf8BgwE7/4ODYYMBU/8BAQEPyYMBAQEpAQEBIVP/""AOmQAQBxAYMBASEB/YMBAf8BgwE7/4ODYYMBU/8BAQEPyYMBAQEpAQEBIVP/"

 }}

}}

Briefly, this transaction contains a compiled instruction that has a program_id_index with an unusually large value of 41 , much
larger than the array of accounts in the transaction that it is used to index into. This instruction makes its way to the
uncompile_instructions function where that index causes a panic on line 107:

runtimeverification/_audits_solana-foundation_kora/crates/lib/src/transaction/instruction_util.rs
Line 100 to 107 in c2843ac

100100 pubpub fnfn uncompile_instructionsuncompile_instructions((

101101 instructions instructions:: &&[[CompiledInstructionCompiledInstruction]],,

102102 account_keys account_keys:: &&[[PubkeyPubkey]],,

103103)) ->-> VecVec<<InstructionInstruction>> {{

104104 instructions instructions

105105 ..iteriter(())

106106 ..mapmap((||ixix|| {{

107107 letlet program_id program_id == account_keys account_keys[[ixix..program_id_index program_id_index asas usizeusize]];;

72/73

https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/instruction_util.rs#L100-L107
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/instruction_util.rs#L100-L107
https://github.com/runtimeverification/_audits_solana-foundation_kora/blob/c2843ac93801aa51eeba69206defd19a7ac82b1d/crates/lib/src/transaction/instruction_util.rs#L100-L107

[F02] Lower Fee Payer balance after transaction
Not addressed by client

The balance_check target found a transaction that, after aggregating all lamports/token balances, found that the fee payer had lower
funds after execution. This transaction was accepted by the sign_transaction_if_paid endpoint by Kora.

There wasn't enough time to investigate this transaction, but [A10] SPL token transfers are not accounted for in fee payer outflow is
suspected, as the fee payer's balance for an SPL token was drastically reduced.

73/73

