Security Audit Report

Leve I'y Ethereum

Delivered: October 3rd, 2025

Prepared for Levery Inc. by

runtime
verification

1/38

https://www.runtimeverification.com/
https://www.runtimeverification.com/

Table of Contents

e Disclaimer

¢ Executive Summary

e Scope

¢ Methodology

¢ Design Assumptions and Architectural Decisions

o Formal Model and Invariant Properties

e Symbolic Execution with Kontrol

¢ Findings
o AO1l: Levery.getLastOraclePrice does not check if the price is stale.
o AO02: Oracle negative price cast in'_adjustSwapFee'
¢ AO03: Missing validation of permitted.token against expected input currency
¢ A04: Change the loop counters from uint8 to uint256
o AO05: backslash not declared as special character

¢ Informative Findings
e BO1: poolld notused consistently across the Levery contract
e B02: Reading poolBaseFees twice in _adjustSwapFee
e BO03: Missing custom error for fee overflow
o BO04: Duplicated logic when computing the serviceFee
e BO05: Inconsistent Return Variable Usage
e BO06: Approval functions not restricted in SoulboundPositionManager

¢ Client Findings
e LO1 — Native ETH Input Settlement
e L02 — Decimals-Aware Price Calculation
e L0O3 — Symmetric Deviation Metric

2/38

Disclaimer

This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has
been prepared based on data and information that has been provided by you or is otherwise
publicly available, there are likely additional unknown risks that otherwise exist. This report is
also not comprehensive in scope, excluding a number of components critical to the correct
operation of this system. This report is for informational purposes only and is provided on an
"as-is" basis, and you acknowledge and agree that you are making use of this report and the
information contained herein at your own risk. The preparers of this report make no
representations or warranties of any kind, either express or implied, regarding the information
in or the use of this report and shall not be liable to you or any third parties for any acts or
omissions undertaken by you or any third parties based on the information contained herein.

Smart contracts are still a nascent software arena, and their deployment and public offering
carry substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims that impact a large quantity
of funds.

3/38

Executive Summary

Levery Inc. engaged Runtime Verification Inc. to conduct a security audit of the Levery design
and the associated smart contract code. The objective was to review the business logic and
implementation in Solidity and identify any issues that could cause the system to malfunction
or be vulnerable to exploitation.

Levery is a regulatory-grade AMM protocol built on Uniswap V4 that bridges regulated capital
with non-custodial liquidity. The protocol integrates institutional-grade permissioning with DeFi
efficiency through granular KYC/AML controls via an on-chain PermissionManager for role-
based access. It features dynamic, oracle-driven fees that adapt to market deviations,
protecting liquidity providers from toxic arbitrage flows. It utilizes soulbound liquidity positions
through non-transferable ERC-721 tokens for robust compliance governance. The system
includes a service fee vault with transparent revenue-sharing mechanisms and emergency
pause controls at global and per-pool levels. Levery is designed to meet institutional
requirements for on-chain participation while maintaining DeFi's capital efficiency, targeting the
gap between traditional finance's compliance needs and decentralized finance's accessibility.

The audit was conducted over four and a half calendar weeks, from July 16th to August 15th.
Runtime Verification performed a design review to assess the protocol's high-level intent and
security-critical invariants, followed by a focused manual review of the Solidity implementation.
We used Kontrol, our formal verification tool, to support this process by specifying and
checking invariants across symbolic state transitions.

4/38

Scope

This audit covers only the code contained in a client-provided, currently private GitHub
repository. Within this repository, specific files and contracts were highlighted as being in scope
for this engagement. The repositories, contracts, and commit information are detailed below:

Levery GitHub Repository (private as of writing this)
https://github.com/levery-org/levery-contracts
Commit: 970ec76

The following files were in the scope of the audit:

¢ src/Levery.sol

¢ src/CompliantRouter.sol
 src/SoulboundPositionManager.sol
« src/utils/PermissionManager.sol

o src/utils/BaseSwapRouterPermit2.sol
 src/utils/PositionDescriptor.sol

o src/libraries/Descriptor.sol

The audit is limited to the artifacts listed above. Off-chain components, third-party
dependencies, deployment and upgrade scripts, and any client-side logic are excluded from
the scope of this engagement.

Our security analysis is based on the following operational assumptions. If any of these
assumptions are violated, the protocol’s security guarantees may no longer hold and additional
review may be required.

* Base Protocol Correctness
We assume that the underlying protocols, such as Uniswap and Chainlink, behave as
specified and do not contain critical vulnerabilities.

o Trusted Admin Addresses
All addresses holding admin roles are trusted, properly secured, and act in good faith.

¢ Price Oracle Integrity
Price feeds (oracles) report accurate asset valuations and cannot be tampered with to
manipulate the deviation between the pool prices of the tokens and the market price.

5/38

https://github.com/levery-org/levery-contracts
https://github.com/levery-org/levery-contracts/commit/970ec76509360ffcc81e31cd51c9ff93062adf58

o Collateral Curation & Systemic-Risk Mitigation
Adequate processes for monitoring, setting up market configuration data, updating market
configuration parameters, and classifying collateral (e.g., implementing tiered collateral
system, liquidity thresholds, ongoing asset vetting, LTVS) are in place to prevent systemic
failures.

6/38

Methodology

Although manual code review cannot guarantee the discovery of all possible security
vulnerabilities, as noted in our Disclaimer, we followed a systematic approach to make this
audit as thorough and impactful as possible within the allotted timeframe.

The audit engagement lasted four-and-a-half weeks, from July 16th to August 15th, and began
with a focused design review. We allocated the first week to analyze the architecture and
intended functionality of the Levery system. This included reasoning about the interactions
between the protocol components and identifying properties that should be upheld throughout
the system’s lifecycle. Following the design review, we conducted a thorough manual code
review of the in-scope contracts, progressing systematically.

The engagement included specialized focus areas such as interest rate strategies with
underlying protocol integrations (Uniswap) and price oracle analysis covering integrations with
multiple providers (Chainlink, Scribe, Redstone).

This process was aided by our formal verification tool, Kontrol, which enables symbolic
execution of Solidity code. Where appropriate, we defined formal properties and used Kontrol
to verify them under various symbolic inputs and system states.

Findings presented in this report stem from a combination of:

+ Manual inspection of the Solidity source code.
« Design-level reasoning about contract interactions and system invariants.
+ Symbolic proofs and property-based assertions were executed using Kontrol.

In addition to identifying bugs and vulnerabilities, we also evaluated gas usage patterns,
reviewed edge-case handling, and provided recommendations for code clarity and safety
improvements.

Throughout the engagement, we held internal discussions among auditors to cross-review the
findings and validate risk assessments.

7/38

Design Assumptions and Architectural
Decisions

This section describes design decisions that reflect the institutional deployment context and
establish the foundation for maintaining security throughout the system.

Institutional Deployment

Levery operates under a controlled deployment paradigm, provisioning critical infrastructure
components through internal operations with established security procedures. The constructor
validation approach implements non-zero address checks without addr.code. length
validation, following Uniswap v4 periphery patterns and assuming trusted deployer
infrastructure where addresses are controlled through operational procedures.

Oracle Management

Levery's original design delegated oracle operations to externally managed wallets without
protocol-level staleness validation. The getlLastOraclePrice function prioritized operational
flexibility across multiple providers (Chainlink, ChronicleLabs's Scribe, Redstone, and Pyth)
through the standard Aggregatorv3interface , but it lacked freshness controls.

During review, issue A01: Levery.getLastOraclePrice does not check if the price is stale.
identified that stale oracle prices could cause usability degradation, such as swaps being
rejected due to incorrectly calculated dynamic fees.

The enhanced design ensures that pools connect to reputable price oracles and, by default,
enforce freshness via heartbeat and maxAge bounds. For event-driven or domain-specific
feeds (e.g., certain RWAs), Levery allows pool-level configuration without heartbeat
requirements; in such cases, the institution documents the update policy and accepts that
dynamic LP-fee adjustments may be constrained when the price is considered stale by policy.

Compliance Integration

The fixed 32-byte hookData format uses exactly the user address for KYC verification, with
routers tolerating =32 bytes for forward compatibility, but hooks decoding only the address
portion. This provides a simple, deterministic compliance path with minimal calldata overhead.

8/38

Process-based institutional branding validation reflects the assumption that administrative
content sources are trusted and validated through separate institutional procedures rather than
requiring comprehensive on-chain sanitization.

Fee Architecture

Levery distinguishes the LP Fee (liquidity providers’ fee) from the Service Fee (institution fee).
The service fee is denominated in the input token. For exact-input swaps, it is collected in
beforeswap ; for exact-output swaps, it is collected in afterswap , still in the input currency.
LP fee (including any dynamic adjustment) remains orthogonal to the service fee.

System Flow

Users interact through either CompliantRouter (for swaps) or SoulboundPositionManager (for
liquidity operations), executing through PoolManager, which triggers Levery hooks. All swaps
and liquidity actions pass through Levery's hooks for compliance validation, role checking,
dynamic fee calculation via oracle integration, and service fee collection to the PaymentSplitter
vault.

9/38

Formal Model and Invariant Properties

The protocol's security relies on several mathematically precise invariants that must hold
across all system states. These formal properties provide the foundation for our security
analysis and guided our verification efforts using symbolic execution.

Formal Definitions

Valid Swap
A swap is valid if and only if:

e sender € {authorized swapRouter, quoter} .

e permissionManager.isSwapAllowed(user) = true.

If a pool-required role exists, the user holds that role with swap permission.
The pool and contract are not paused.

If an oracle is set for the pool, the oracle price is nonzero.

Valid Liquidity Operation
A liquidity operation is valid if and only if:

e sender == authorized positionManager .

e permissionManager.isLiquidityAllowed(owner) = true .

« If the pool requires a role, the owner holds that role with liquidity permission.
e The pool and contract are not paused.

Valid Position Modification
A position modification is valid if and only if:

e caller == ownerOf(tokenId) .
e sender == authorized positionManager .

e permissionManager.isLiquidityAllowed(owner) = true .

The pool and contract are not paused.
All slippage and compliance checks pass.

Dynamic LP Fee
For each swap in pool p, the dynamic fee is calculated as:

10/38

‘P onchain — P oracle‘
P oracle

dynamicFee(p) = baseFee(p) + < X deviationFeeFactor>

where all fees are bounded by [0, MAX PPM] .

Role Assignment
A user u has a role r for pool p if rolePermissions(r, u) includes the required action and
poolRequiredRole(p) = r.

Service Fee Deduction

» For exact-input swaps, deduct from the input token amount and send to the Fee Vault
before swap.

» For exact-output swaps, deduct from the input amount after the swap and send to the Fee
Vault

Soulbound Position
A position token t is soulbound if all transfer and approval functions revert, ownerof(t) is set
at mint and never changes, and only ownerof(t) can modify or burn ¢.

Emergency Pause State
A pool or the contract is paused if its corresponding paused flag is set. While paused, no user
actions are valid, except for explicitly allowed admin/emergency actions.

Admin Authority

Levery implements a dual-authority model distinguishing protocol-level and venue-level
administration. The provider holds protocol-level authority, including global pause/unpause
capabilities, critical address updates for core infrastructure components (router, quoter,
positionManager, permissionManager, fee vault), and global serviceFee configuration.

The institution operates at the venue level with authority over fee policy (global and per-pool
baseFee), oracle assignments, individual pool pause controls, role definitions, and user
permission assignment per pool. The PermissionManager admin role is held by the institution
or an address it designates, enabling decentralized permission management while maintaining
clear operational boundaries between protocol infrastructure and venue-specific policies.

Core Invariants

Compliance Enforcement

11/38

+ No user can swap or manage liquidity unless permitted by the PermissionManager and, if
required, by role.

¢ Only the current admin can update permissions or change the admin.

+ Pool creation is restricted to institution-level privileges (enforced in beforeInitialize).

+ Oracle management requires institution-level access with valid address validation.

Fee and Oracle

o All fees are within [0, MAX_PPM] with mathematical validation.

The dynamic fee is monotonic in price deviation: higher deviations result in higher fees.
Swaps revert if the oracle price is zero.

Service fees are always deducted and sent to the Fee Vault when swaps succeed.
When paused, swaps and liquidity actions must revert.

Soulbound Position

¢ All ERC-721 transfer and approval entry points for position tokens revert: transferFrom ,
both safeTransferFrom overloads, approve , and setApprovalForAll .

 Liquidity can only be managed via the authorized positionManager .

o Ownership of a position token never changes after mint.

e Only ownerof(tokenId) can modify or burn a position; no operator approvals are
permitted.

e Each tokenId is unigue and never reused.

Role Management

* Roles cannot be created twice or assigned/revoked if they do not exist.
¢ Pool-required roles must reference an existing role.
» Role permissions are properly enforced for pool access.

Operational Properties

Safety Properties ensure that bad things never happen:

o Compliance is always enforced: no swap or liquidity operation can be executed unless the
user passes compliance and role checks.
e Fee bounds are maintained: all fees remain within [0, MAX_PPM] .

12/38

Oracle price validation: if oracle price is zero, swap reverts.

Pausing effectiveness: when paused, all user operations revert except allowed
admin/emergency actions.

Pool integrity: pool balances are always non-negative, and total supply matches the sum
of individual holdings.

Non-transferability: soulbound positions cannot be transferred under any circumstances.
Self-custody guarantee: neither provider nor institution takes custody of user assets.
Current regulatory compliance is enforced through pool-level controls and permission
management. For future regulatory requirements, individual positions may be frozen for
compliance purposes, but can never be transferred or redeemed by third parties; only the
owner wallet can unwind once conditions are met.

Liveness Properties ensure that good things eventually happen:

It should always be possible for a compliant, authorized user to perform a swap or liquidity
action, provided the contract and pool are not paused and all invariants are satisfied.

If a user is granted permission and the appropriate role, they will eventually be able to
execute the corresponding action, assuming the contract and pool remain unpaused.

It should always be possible for the owner of a soulbound position to close and withdraw
liquidity, provided the contract and pool are not paused and all checks pass.

If the institution initiates a valid update (creating a pool, assigning a role, setting an
oracle), that update will eventually take effect, provided the contract is not paused and all
invariants are respected.

If a paused state is lifted, all compliant, authorized users regain the ability to interact with
the protocol.

If a payee in the payment splitter has a positive releasable balance, they can always claim
their funds, provided the contract holds a sufficient balance and no admin action removes
their shares.

13/38

Symbolic Execution with Kontrol

In addition to the code review, we have adapted some of the tests in the repository for
symbolic execution with Runtime Verification's formal verification tool, Kontrol. Kontrol is
designed to integrate seamlessly with Solidity-based projects. It enables developers to write
property-based tests in Solidity and leverage symbolic execution to verify them, thus ensuring
that smart contracts behave as intended under all possible inputs and scenarios.

Unlike traditional testing approaches that use concrete values or fuzzing with random inputs,
Kontrol interprets test parameters as symbolic variables and employs mathematical reasoning
to explore all execution paths simultaneously. This comprehensive coverage ensures
properties hold across the entire input space rather than just specific test cases. For proofs
that are failing, Kontrol produces the model, or the counterexample, with concrete assignments
to symbolic variables that trigger the execution path which causes the failure.

Note that in practice, some assumptions need to be made: to eliminate impossible initial
states, to exclude properties that do not apply, or to avoid corner cases that complicate
symbolic execution. A typical example is to bound the value of test inputs and storage
variables to avoid reverts due to overflows.

Preparing Kontrol proofs

To support reasoning about conversions between signed integers and fixed-width 32-byte
words, we extended Kontrol with new simplification rules for EVM arithmetic. These
improvements allow the engine to efficiently handle operations like sign extension (used for
type casting) and modular arithmetic (which corresponds to powmod , chop , and signextend
in K), which are central to Uniswap V4's dynamic fee computation and core mathematical
routines.

Additionally, to facilitate the reasoning, in the setUp function used by Kontrol tests, we deploy
the Levery hook at the hardcoded address, which satisfies the address requirements in
accordance with the hook functions it implements.

We created a separate test/kontrol directory with modified contract copies to preserve the
original sources. This directory includes selected tests from LeveryFuzz and AccessControl

14/38

suites, with access control tests generalized through input parameterization for symbolic
execution and fuzzing.

diff --git a/test/flows/AccessControl.t.sol b/test/flows/AccessControl.t.sol
--- aftest/flows/AccessControl.t.sol
+++ b/test/kontrol/LeveryProve.k.sol

- function test_updateBaseFee_byInstitution() public {
- uint24 newBaseFee = 4321;
+ function testFuzz_updateBaseFee_byInstitution(uint24 newBaseFee) public {
+ vm.assume(newBaseFee <= MAX_PPM);
levery.updateBaseFee(newBaseFee);
assertEq(levery.baseFee(), newBaseFee);

- function test_setPoolBaseFee_byInstitution() public {
- uint24 fee = 250;
- levery.setPoolBaseFee(key, fee);

+ function testFuzz_setPoolBaseFee byInstitution(uint24 newFee) public {
+ vm.assume(newFee <= MAX_PPM);
+ levery.setPoolBaseFee(key, newFee);

bytes32 pid = Poolld.unwrap(key.toId());
- assertEq(levery.poolBaseFees(pid), fee);
+ assertkEq(levery.poolBaseFees(pid), newFee);

These tests focus on configuration management and access control, validating core system
properties including fee parameter bounds, input validation, and oracle configuration integrity.
Specifically, the tests verify that all fee parameters are constrained within the valid range of
zero to one million parts per million (defined as mAx_ PP), that invalid inputs trigger
appropriate revert conditions, and that oracle configurations can be established and retrieved
for pools with any non-zero oracle address and the associated comparison flag.

The results of the tests are available in Kaas Report.

Reproducing the proofs

To reproduce the results of this verification locally, follow the steps below:

15/38

https://kaas.runtimeverification.com/app/organization/runtimeverification/_audits_levery-org_levery-contracts/cache/b7673d2b1401b702283424c8583fe92643f1a055/report

1. Install Kontrol

bash <(curl https://kframework.org/install)
kup install kontrol

2. Run the proofs

export FOUNDRY_PROFILE=kontrol-proofs
kontrol build
kontrol prove

The kontrol-proofs Foundry profile is configured in the foundry.toml file to build the
project with Kontrol. The kontrol.toml file contains a set of options and flags that Kontrol will
use during execution. Users can edit the file to change these options or turn flags on or off.
Refer to the Kontrol documentation to learn more about Kontrol options.

16/38

https://docs.runtimeverification.com/kontrol

Findings
This section contains all issues identified during the audit that could lead to unintended

behavior, security vulnerabilities, or failure to enforce the protocol’s intended logic. Each issue
is documented with a description, potential impact, and recommended remediation steps.

17/38

A01: Levery.getLastOraclePrice does not
check if the price Is stale.

Severity: Medium Difficulty: Medium Recommended Action: Fix Code
Partially addressed by client

Oracle data feeds can return stale pricing data for a variety of reasons. If oracle data is stale,
dynamic fee calculation may degrade execution quality, using incorrect fees or cause swaps to
revert. Smart contracts should always check the updatedAt parameter returned by

latestRoundData() and compare it to a staleness threshold. The staleness threshold should
correspond to the heartbeat of the oracle’s price feed. This can be found on Chainlink’s list of
Ethereum mainnet price feeds by checking the “Show More Details” box, which will show the
“Heartbeat” column for each feed. (source)

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 319 in 970ec76

319 (, i1nt256 answer,,,) = priceFeed.latestRoundData();

Recommendation:

Implement heartbeat checks.

Consider implementing range validation to catch obviously bad prices that pass staleness
checks. That way, it would work across different oracle sources.

Implement provider-specific validations that accommodate different heartbeat patterns and
staleness thresholds for each of the supported oracle providers (Chainlink, Scribe, Redstone,
Pyth).

Analysis

The Levery contract assigns an oracle for each pool using the hooks. Multiple providers, such
as Chainlink, Chronicle Labs' Scribe, Redstone, and Pyth, are supported, accessed through a
common interface where applicable (e.g., Aggregatorv3Interface).

18/38

https://ethereum.stackexchange.com/questions/133242/how-future-resilient-is-a-chainlink-price-feed/133843#133843
https://docs.chain.link/data-feeds/price-feeds/addresses/?network=ethereum
https://docs.chain.link/data-feeds/price-feeds/addresses/?network=ethereum
https://medium.com/cyfrin/chainlink-oracle-defi-attacks-93b6cb6541bf#fb78
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L319
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L319
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L319

struct PoolOracle {
address oracle;
bool comparewWithPrice0;

3
mapping(bytes32 => PoolOracle) public poolOracles;

However, due to this generality, determining the staleness duration (e.g., Chainlink's heartbeat)
is not straightforward.

Client Response

A stale oracle can bias dynamic LP-fee adjustments, but it does not compromise pool
accounting or custody. In the worst case, LP fees are misestimated; base fees remain in effect.

For AO1, we would like to clarify that in our specific architecture, a stale oracle price does not
pose a “potential loss of funds for the user and/or the protocol” as mentioned in the draft
report. The worst-case impact is limited to usability degradation, for example, swaps being
rejected due to higher calculated dynamic fees, or the system falling back to the default
Uniswap V4 base fee behavior.

That said, we still intend to improve the implementation by adding an optional heartbeat check
per oracle feed. When configured, the system will ignore dynamic fee adjustments from
outdated prices, while maintaining compatibility with event-driven or custom oracle sources.

Status

In commit 4017¢15c6341c461cf6cdfb7d0ce546f3968abas, there is a new maxAge field added
to the Pooloracle structure.

Anew (maxAge > 0 && block.timestamp > updatedAt + maxAge) check has been added to
ensure the price is not stale. This check can be bypassed by assigning 0 to maxAge .

19/38

https://github.com/levery-org/levery-contracts/pull/2/commits/4017c15c6341c461cf6c4fb7d0ce546f3968aba8

A02: Oracle negative price cast in
' adjustSwapFee'

Severity: Low Difficulty: High Recommended Action: Fix Code Addressed by client

The value of the price returned by the latestRoundbata is ofthe int256 type and, in
_adjustSwapFee, it is directly cast to the uint256 type without first checking if it's a negative
value. It is followed by a zero check after the cast is done. However, if an oracle returned -1 ,
for example, the uint256 cast would changeitto 2 ** 256 - 1 , and the zero check would
be redundant.

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 393 to 394 in 970ec76

393 uint256 mp = uint256(getLastOraclePrice(po.oracle, key));
394 if (mp == 0) revert OraclePriceZero();

The int256 type choice for the answer field in the Aggregatorv3Interface is intentional to
support various types of data feeds beyond simple asset prices. Most production price feeds

for assets like ETH/USD or LINK/USD should never return negative values, but the interface

design allows flexibility for different oracle use cases.

Recommendation

Change the zero check to a negative number check and consider moving this check and the
uint256 casting inside getLastOraclePrice .

function getlLastOraclePrice(address _oracle, PoolKey calldata key) public view override
returns (uint256) {
AggregatorV3Interface priceFeed = AggregatorV3Interface(_oracle);
uint8 feedDecimals = priceFeed.decimals();
(, int256 answer,,,) = priceFeed.latestRoundData();
if(answer <= 0) revert OraclePriceZero(); // Add this here

return uint256(answer); //uint256 cast here

20/38

https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/main/src/Levery.sol#L393-L394
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L393-L394
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L393-L394
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L393-L394

Status

Addressed in commit 81198fb2e9b0527b713f3240b67f377d3f6a02d5.

21/38

https://github.com/levery-org/levery-contracts/pull/2/commits/81198fb2e9b0527b713f3240b67f377d3f6a02d5

A03: Missing validation of permitted.token
against expected input currency

Severity: Low Difficulty: Medium Recommended Action: Fix Code Addressed by client

The router fails to verify that the token specified in the Permit2 payload matches the input
currency expected by the swap. An attacker could supply a permit for an arbitrary token,
causing the router to pull a different token from the user than the one used for the swap,
potentially executing a swap without supplying the required input token.

Recommendation

Validate that permitPayload.permit.permitted.token matches the address of
inputcurrency (or its ERC-20 address) before invoking permitTransferFrom or
transferFrom , and revert the transaction if they differ.

Notes

This finding was identified with the assistance of the Almanax tool.

Auditor notes

This is a low-severity denial-of-service (DoS) vulnerability, not a critical loss-of-funds issue.
The locking mechanism protects against token confusion attacks by ensuring that exact debts
are paid in the correct currencies after the unlockcallback function finishes executing, so
incorrect token transfers don't satisfy the debt.

/// @inheritdoc IPoolManager
function unlock(bytes calldata data) external override returns (bytes memory result) {
if (Lock.isUnlocked()) AlreadyUnlocked.selector.revertWith();

Lock.unlock();
// the caller does everything in this callback, including paying what they owe via

calls to settle
result = IUnlockCallback(msg.sender).unlockCallback(data);

22/38

https://almanax.ai/

if (NonzeroDeltaCount.read() != 0) CurrencyNotSettled.selector.revertWith();
Lock.lock();

The attack flow:

1. Swap executes with expected inputCurrency , creating a debt

2. sync() records the initial balance of inputCurrency

3. Permit2 transfers the attacker's worthless token (not inputcCurrency)
4, settle() returns success but doesn't clear the debt

5. unlock() detects non-zero delta for inputCurrency and reverts

Suggested fix:

Update BaseSwapRouterPermit2. unlockCallback as follows:

--- a/src/utils/BaseSwapRouterPermit2.sol
+++ b/src/utils/BaseSwapRouterPermit2.sol
@@ -15,6 +15,8 @@ contract BaseSwapRouterPermit2 is BaseSwapRouter {

constructor(IPoolManager manager, ISignatureTransfer permit2_) BaseSwapRouter(manager,
permit2_) {}

+ error TokenMismatch(address);

function _unlockCallback(bytes calldata callbackData) internal virtual override returns
(bytes memory) {
unchecked {
// Decode core swap parameters
@@ -47,6 +49,9 @@ contract BaseSwapRouterPermit2 is BaseSwapRouter {
(,,, permitPayload) = abi.decode(callbackData, (BaseData, Currency,
PathKey[], PermitPayload));

}
+ if (permitPayload.permit.permitted.token != Currency.unwrap(inputCurrency)) {
+ revert TokenMismatch(permitPayload.permit.permitted.token);
+ }

// Sync pool and handle token pull
poolManager.sync(inputCurrency);

23/38

Foundry Test

In CompliantRouterTest.t.sol:

function test_permitTokenMismatchVulnerability() public {
/| Create a worthless token that attacker controls
MockERC20 maliciousToken = new MockERC20('MAL', 'MAL', 18);
maliciousToken.mint(charlie, 1000 ether);

// Charlie approves the malicious token to Permit2
vm.prank(charlie);
maliciousToken.approve(address(permit2), type(uint256).max);

// Create permit for the MALICIOUS token (not currency0!)
IAllowanceTransfer.PermitSingle memory ps =
defaultERC20PermitAllowance(address(maliciousToken), type(uint160).max,
type(uint48).max, 0);
ps.spender = address(compliantRouter);
bytes memory sigPermit = getPermitSignature(ps, charliePK, permit2.DOMAIN_SEPARATOR());

// Setup swap parameters expecting currency®
uint256 amountIn = 1 ether;

uint256 amountOutMin = 0;

uint256 deadline = block.timestamp + 1;

PathKey[] memory path = new PathKey[](1);
path[0] = PathKey({

intermediateCurrency: currencyl,

fee: key.fee,

tickSpacing: key.tickSpacing,

hooks: IHooks(levery),

hookData: abi.encode(charlie)

b
// Approve malicious token via permit2
vm.startPrank(charlie);

compliantRouter.permit(charlie, ps, sigPermit);

// Now craft raw swap data with mismatched permit
BaseData memory bd = BaseData({

24/38

amount: amountlIn,
amountLimit: amountOutMin,
payer: charlie,

receiver: charlie,

flags: SwapFlags.PERMIT2

IO

PermitPayload memory pp;
pp.permit.permitted.token = address(maliciousToken); // WRONG TOKEN!

bytes memory payload = abi.encode(bd, currency@, path, pp);

// Should revert with 'TokenMismatch(maliciousToken)' if properly validated

vm.expectRevert(abi.encodeWithSelector(BaseSwapRouterPermit2.TokenMismatch.selector,
address(maliciousToken))); // This SHOULD happen with fix

// If vulnerable: pulls malicilous token but swaps as if it were currency®

compliantRouter.swap(payload, deadline);
vm.stopPrank();

Status

Addressed in commit 367dc9c5136ebh187ce22ff90cc8f020c27d62c8c.

25/38

https://github.com/levery-org/levery-contracts/pull/5/commits/367dc9c5136eb187ce22ff90cc8f020c27d62c8c

A04: Change the loop counters from uint8
to uint256

Severity: Low Difficulty: Medium Recommended Action: Fix Code Addressed by client

Description

The escapeSpecialcharacters function uses a uint8 loop counter to iterate over
symbolBytes. length . If the input symbol string length exceeds 255 bytes, the uints index
will overflow (wrap to 0) and never reach symbolBytes.length , resulting in an infinite loop
and gas exhaustion. This can make tokenURI retrieval unusable for positions involving tokens
with extremely long symbols.

Recommendation

Use a uint256 loop counter instead of uint8 for iterating over symbolBytes.length , and/or
enforce a maximum allowed symbol length before processing to prevent excessively long
inputs.

Notes

This finding was identified with the assistance of the Almanax tool.

Auditor Notes:

The compiler's built-in overflow protection will cause a revert when i++ increments past 255 ,
preventing an infinite loop.

Recommendation
Change the loop counters from uints to uint256 .

Foundry test

In PositionDescriptor.t.sol:

function test_escapeSpecialCharacters_uint80verflow() public {
uint256 stringlLength=256;

26/38

https://almanax.ai/

// Create a string longer than 255 bytes
bytes memory longString = new bytes(stringlLength);

// Fill with 'A' characters

for (uint256 1 = 0; i < stringLength; i++) {
longString[i] = 'A';

// With the current implementation, this will revert due to uint8 overflow when i
increments from 255 to 256
wrap.esc(string(longString));

Status

Addressed in commit 367dc9c5136eb187ce22ff90cc8f020c27d62c8c

27/38

https://github.com/levery-org/levery-contracts/pull/6/commits/367dc9c5136eb187ce22ff90cc8f020c27d62c8c

A05: backslash not declared as special
character

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

The escapeSpecialcharacters function in the Descriptor library fails to escape backslash
characters (\) when preparing strings for JSON encoding. While the function correctly
escapes quotes, newlines, tabs, and other control characters, it omits backslashes from the list
of special characters that must be escaped.

Recommendation
Add backslash to the list of special characters that must be escaped:

function isSpecialCharacter(bytesl b) private pure returns (bool) {
return b == T || b == "\UOOOC” || b == ll\nll || b == ll\rll || b == ll\tll I| b == ll\\ll;

Foundry test

In PositionDescriptor.t.sol:

function test_escapeSpecialCharacters_missingBackslash() public view {
// Test that a backslash is NOT escaped (but should be)
string memory input = 'Test\\Backslash';
string memory escaped = wrap.esc(input);

// Currently returns: Test\Backslash (unescaped)
// Should return: Test\\Backslash (escaped)
assertEq(escaped, 'Test\\\\Backslash'); // This will PASS (incorrectly)

Status

Addressed in commit 5bheeledbb726eae0f75705db0a456cd05514b396

28/38

https://github.com/levery-org/levery-contracts/pull/6/commits/5bee1edbb726eae0f75705db0a456cd05514b396

Informative Findings

This section includes observations that are not directly exploitable but highlight areas for
improvement in code clarity, maintainability, or best practices. While not critical, addressing
these can strengthen the system's overall robustness.

29/38

B01l: _poollid not used consistently across
the Levery contract

Severity: Informative Difficulty: High Addressed by client

There are still some places where PoolId.unwrap(key.toId()); is used instead of the
_poolld private helper.

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 371 to 373 in 970ec76

371 function _poolId(PoolKey calldata key) private pure returns (bytes32 pid) {
372 pid = Poolld.unwrap(key.toId());
373 }

Recommendation

Use the poolid helper consistently throughout the contract to improve code clarity and
maintainability.

Status
Addressed in commit ce793da3a253b4fh26d764f3ff316614f64b7c76.

Client response

Introduce or reuse poolId(PoolKey) and replace direct calls to
PoolId.unwrap(key.toId()) in:
whenPoolNotPaused , setPoolBaseFee , setPoolOracle, removePoolOracle ,

getPoolBaseFee , getPoolRequiredRole , getPoolOracle , and role/pausing helpers.

30/38

https://github.com/levery-org/levery-contracts/pull/10/commits/ce793da3a253b4fb26d764f3ff316614f64b7c76
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L371-L373
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L371-L373
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L371-L373

B02: Reading poolBaseFees twice Iin
_adjustSwapFee

Severity: Informative Difficulty: High Addressed by client

getPoolBaseFee(key) is read twice from storage, incurring additional gas costs.

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 385 to 394 in 970ec76

385 function _adjustSwapFee(PoolKey calldata key, uint256 price@, uint256 pricel, bool
zeroForOne, uint24 currentFee)
386 internal
387 view
388 returns (uint24 newSwapFee)
389 {
390 newSwapFee = getPoolBaseFee(key) != 0 ? getPoolBaseFee(key) : currentFee;
391 PoolOracle memory po = poolOracles|Poolld.unwrap(key.toId())];
392 if (po.oracle != address(0)) {
393 uint256 mp = uint256(getLastOraclePrice(po.oracle, key));
394 if (mp == 0) revert OraclePriceZero();
Recommendation

Store the pool base fee in a local variable before computing the newswapFee .

Status

Addressed in commit cb9a519be690266cel13c13cf2b03adaala041380.

31/38

https://github.com/levery-org/levery-contracts/pull/10/commits/cb9a519be690266ce13c13cf2b03adaa1a041380
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L385-L394
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L385-L394
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L385-L394

B03: Missing custom error for fee overflow
Difficulty: High ~ Addressed by client

The fee overflow check
require(fee256 <= type(intl128).max && fee256 >= type(int128).min, "Fee overflow")
is duplicated in both handleExactInputServiceFee and afterSwap .

Additionally, custom errors are missing across the compliantRouter ,
SoulboundPositionManager , and PositionManager contracts.

Recommendation

The require check could be refactored into an if statement, and a new custom error
ServiceFeeOutO0fBounds could be used.

error ServiceFeeOutOfBounds(int256);

if(fee256 >= type(int128.max) || fee256 <= type(int128.min)) revert
ServiceFeeOutOfBounds(fee256);

Status

Addressed in commit 08345c5e559be97234ead8886¢f8198dbac3b135

32/38

https://github.com/levery-org/levery-contracts/pull/10/commits/08345c5e559be97234ead8886cf8198dbac3b135

B04: Duplicated logic when computing the
serviceFee

Severity: Informative Difficulty: High Addressed by client

The service fee calculation logic is repeated in two locations with identical mathematical
operations and validation checks. This code duplication creates several maintenance issues
that, while not directly exploitable, weakens the codebase’s quality and increases the risk of
inconsistent updates.

Location 1:

Q runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 561 to 562 in 970ec76

561 int256 fee256 = (-inputDelta * int256(serviceFee)) / int256(MAX_PPM);
562 require(fee256 <= type(int128).max && fee256 >= type(int128).min, "Fee

overflow");

Location 2:

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 423 to 425 in 970ec76

423 int256 fee256 = (-params.amountSpecified * int256(serviceFee)) / int256(MAX_PPM);
424 require(fee256 <= type(int128).max && fee256 >= type(int128).min, "Fee
overflow");
425 int128 fee = int128(fee256);
Recommendation

Refactor the logic in a single function, such as:

function _computeServiceFee(uint256 amount) private view returns(uint128){
uint256 fee = (amount * serviceFee) / MAX_PPM;
require(fee <= type(int128).max && fee >= type(int128).min, "Fee overflow");
return uint128(fee);

33/38

https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L561-L562
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L561-L562
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L561-L562
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L423-L425
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L423-L425
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L423-L425

Status

Addressed in commit 2be23e7f96c2cac4ch5al5f61aa09af18b8b701f.

The client added a new function that computes the service fee and returns both the feebelta
and the feeAbs values.

34/38

https://github.com/levery-org/levery-contracts/pull/10/commits/2be23e7f96c2cac4cb5a15f61aa09af18b8b701f

B05: Inconsistent Return Variable Usage
Difficulty: High ~ Addressed by client

The function _computebynamicFee() declares a named return variable adjustedrFee but
doesn't use it, instead relying on an explicit return statement:

O runtimeverification/_audits_levery-org_levery-contracts/src/Levery.sol
Line 436 to 440 in 970ec76

436 /// @return adjustedFee Adjusted LP fee in basis points.
437 function _computeDynamicFee(PoolKey calldata key, bool zeroForOne) private view
returns (uint24 adjustedFee) {
438 (uint256 pO, uint256 pl) = getCurrentPrices(key);
439 return _adjustSwapFee(key, pO, pl, zeroForOne, baseFee);
440 }
Recommendation

Either use the named return variable or remove the unused variable name.
Status

Fixed using the named returned variable in commit
07402cala3f559af69a451e8edaf728919ea429f.

35/38

https://github.com/levery-org/levery-contracts/pull/10/commits/07402ca1a3f559af69a451e8edaf728919ea429f
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L436-L440
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L436-L440
https://github.com/runtimeverification/_audits_levery-org_levery-contracts/blob/970ec76509360ffcc81e31cd51c9ff93062adf58/src/Levery.sol#L436-L440

B06: Approval functions not restricted in
SoulboundPositionManager

Difficulty: High ~ Addressed by client
Description

The soulboundPositionManager contract implements soulbound NFTs by overriding transfer
functions (transferFrom , safeTransferFrom) so they always revert, preventing token
transfers. However, the contract fails to override the approval functions (approve ,
setApprovalForAll) inherited from ERC721, allowing users to grant transfer permissions
even though transfers will always revert.

This creates an inconsistent state where users can successfully call
approve(spender, tokenId) and setApprovalForAll(operator, true) . These approvals
emit events that may misleadingly suggest that transfers are authorized.

Recommendation

Override the approval functions to revert, maintaining consistency with the soulbound design:

function approve(address, uint256) public pure override {
revert("Soulbound: approvals disabled");

function setApprovalForAll(address, bool) public pure override {
revert("Soulbound: approvals disabled");

Status

Additional tests were added in commit 4c79feaebfed7leceaff6ad1f1587fdede26f45.

Client Response

ERC721Permit v4'’s approve and setApprovalForAll functions are non-virtual, so they
cannot be overridden to revert. Approvals may succeed and emit events, but transfers are

36/38

https://github.com/levery-org/levery-contracts/pull/11/commits/4c79feaebfe471ecea4ff6a41f1587fdede26f45

already blocked in soulboundPositionManager . We codify this behavior with tests.

37/38

Client Findings

During the engagement we confirmed three implementation issues identified by the Levery
team and validated their fixes. We are mentioning them below for visibility.

LO01 — Native ETH Input Settlement

Fixed in: PR #4
Original issue: unlockcallback forced Permit2 for all inputs, including native ETH.

Fix: When inputCurrency == ADDRESS ZERO , bypass Permit2 and settle ETH directly via
poolManager.sync() + settle() ,refunding leftovers. ERC-20 path unchanged (Permit2 +
AO03 token validation). No breaking changes.

L02 — Decimals-Aware Price Calculation

Fixed in: PR #7

Original issue: Hardcoded 1e18 normalization broke price calculations for mixed-decimal
pairs (6/18, etc.).

Fix: Scale by actual decimals (16/deco / 102dec1) using mulDiv . Reject boundary
sqrtPrice (MIN/MAX). Now matches oracle price units correctly.

L03 — Symmetric Deviation Metric

Fixed in: PR #9
Original issue: deviation = |price - oracle| / oracle over-penalized when oracle < pool.

Fix: Changed to deviation = |price - oracle| / max(price, oracle) . Symmetric
denominator eliminates bias while preserving direction-aware fee gating. Still capped by

deviationFactor .

38/38

https://github.com/levery-org/levery-contracts/pull/4
https://github.com/levery-org/levery-contracts/pull/7
https://github.com/levery-org/levery-contracts/pull/9

