
Security Audit Report

StellarBroker Stellar

Delivered: April 28, 2025

Prepared for SDF by

1/25

https://runtimeverification.com/
https://runtimeverification.com/

Table of Contents
Disclaimer
Executive Summary
Goal
Scope
Methodology
Platform Features and Logic Description

StellarBroker contract

Invariants
Findings

[A1] Swaps May Lead to the Accumulated Fees Drainage
[A2] The Protocol May Incorrectly Handle Fees
[A3] Parametric Fees Enable Users to Deny Profit For the Protocol

Informative Findings
[B1] Best practices recommendations
[B2] The Fee Path May Lead to Arbitrary Assets

2/25

Disclaimer
This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided by you or is otherwise publicly
available, there are likely additional unknown risks which otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of
this system. This report is for informational purposes only and is provided on an "as-is" basis
and you acknowledge and agree that you are making use of this report and the information
contained herein at your own risk. The preparers of this report make no representations or
warranties of any kind, either express or implied, regarding the information in or the use of this
report and shall not be liable to you or any third parties for any acts or omissions undertaken by
you or any third parties based on the information contained herein.

Smart contracts are still a nascent software arena, and their deployment and public offering
carries substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large quantity
of funds.

3/25

Executive Summary
StellarBroker engaged Runtime Verification Inc. to perform a security audit of its smart contract
system as part of the Stellar Development Foundation’s Audit Bank program. The audit was
conducted between March 31 and April 18, 2025. The objective was to assess the security and
correctness of the implementation, identify any exploitable vulnerabilities, and provide
recommendations to enhance the system's reliability.​

StellarBroker serves as a core component of the Soroban-based DeFi ecosystem, facilitating
complex swaps and abstracting routing strategies to optimize the profits of users looking to
trade in the Stellar ecosystem. Given its critical role and potential for a high volume of user
engagement, ensuring the robustness and security of its smart contracts is paramount.​

The audit process involved a comprehensive review of the smart contract codebase, focusing
on both manual inspection and formal verification techniques. Runtime Verification utilized
Komet, its in-house formal verification and fuzz testing tool tailored for Soroban smart contracts,
to rigorously test the system's behavior under various conditions. This included the development
and analysis of key invariants to ensure the system's integrity across all state transitions.​

The audit led to the identification of issues of potential severity for the protocol’s health, which
have been identified as follows:

Potential threats to the contract's fund integrity: [A1] Swaps May Lead to the Accumulated
Fees Drainage, [A2] The Protocol May Incorrectly Handle Fees, [A3] Parametric Fees
Enable Users to Deny Profit For the Protocol;
Potential code/logic malfunction: [A2] The Protocol May Incorrectly Handle Fees.

In addition, several informative findings and general recommendations have also been made,
including:

Best practices and code optimization-related particularities: [B1] Best practices
recommendations;
Minor observations on the protocol's asset management: [B2] The Fee Path May Lead to
Arbitrary Assets.

All findings have been documented in the subsequent sections of this report, along with
suggested mitigations to improve the security and maintainability of the StellarBroker system.

4/25

https://stellar.broker/
https://runtimeverification.com/
https://komet.runtimeverification.com/

Any responses or fixes submitted by the client have been reviewed and noted as part of the
report's finalization.

5/25

Goal
The goal of the audit is threefold:

Review the high-level business logic (protocol design) of Stellar Broker's system based on
the provided documentation and code;
Review the low-level implementation of the system for the individual Soroban smart
contract;
Analyze the integration between abstractions of the modules interacting with the contract in
the scope of the engagement and reason about possible exploitative corner cases.

The audit focuses on identifying issues in the system’s logic and implementation that could
potentially render the system vulnerable to attacks or cause it to malfunction. Furthermore, the
audit highlights informative findings that could be used to improve the safety and efficiency of
the implementation.

6/25

Scope
The scope of this audit is limited to the code contained in a single public GitHub repository
provided by the StellarBroker team. The router contract was identified within this repository as
the primary artifact under review for this engagement.

Stellar Broker Router Repository (public)
https://github.com/stellar-broker/router-contract
Commit: 3a4f4dd47b0e679dee48be10a429fb749fc08c91
src/lib.rs : Core contract responsible for orchestrating multi-source swaps across

various liquidity venues on the Stellar network.

The Stellar Broker router acts as a unified interface to aggregate liquidity from multiple sources,
including but not limited to SoroSwap, Aquarius, Phoenix, and Comet. It currently serves as the
default swap router in the Albedo wallet, with additional integrations in progress.

The codebase under review consists of approximately 800 lines of Rust code written for the
Soroban smart contract platform. In preparing for the audit, Runtime Verification referenced
comments provided in the code, publicly available documentation, and supplemental materials
shared by the Stellar Broker team.

The audit is strictly limited to the artifacts listed above. Off-chain components, frontend logic,
deployment infrastructure, and third-party integrations are outside the scope of this
engagement.

Commits addressing any findings presented in this report have also been reviewed to verify that
identified issues were appropriately addressed prior to report finalization.

7/25

https://github.com/stellar-broker/router-contract

Methodology
Although manual code review cannot guarantee the discovery of all possible security
vulnerabilities, as noted in our Disclaimer, we followed a structured and thorough approach to
maximize the effectiveness of this audit engagement within the agreed timeframe.

The audit spanned three calendar weeks, with each phase of the process designed to identify
and validate both high-level and low-level security concerns.

During the first week, we conducted a high-level design review of the StellarBroker router. We
analyzed the architecture, key trust assumptions, and the security implications of interacting
with various liquidity venues on the Stellar network. Particular emphasis was placed on
identifying core invariants that should be upheld by the protocol under all valid inputs and
runtime conditions.

Over the following two weeks, we thoroughly reviewed the contracts' source code to detect any
unexpected (and possibly exploitable) behaviors. To facilitate our understanding of the
platform’s behavior, higher-level representations of the Rust codebase were created, including:

Modeled sequences of logical operations, considering the limitations enforced by the
identified invariants, checking if all desired properties hold for any possible input value;
Manually built high-level function call maps, aiding the comprehension of the code and
organization of the protocol's verification process;
Performed fuzz testing with Komet to check if the specified invariants would hold for a set
of randomized interactions with the contracts;
Used static analyzers such as Scout to identify commonly identifiable issues;
Created abstractions of the elements outside of the scope of this audit to build a complete
picture of the protocol's business logic in action.

This approach enabled us to systematically check consistency between the logic and the
provided Soroban Rust implementation of the system.

Finally, we conducted rounds of internal discussions with security experts over the code and
platform design, aiming to verify possible exploitation vectors and identify improvements for the
analyzed contracts. Code optimizations have also been discovered as an outcome of these
research sessions and discussions.

Findings in this report stem from a combination of:

8/25

https://komet.runtimeverification.com/
https://www.coinfabrik.com/products/scout/

Manual inspection of the Rust source code.
Design-level reasoning about protocol behavior and system invariants.
Property-based testing and symbolic execution using Komet.

Throughout the audit, vulnerabilities and edge cases were reported to the StellarBroker team in
real-time. This allowed for iterative discussion and clarification, accelerating the fix-and-verify
cycle. In the final week of the audit, we compiled the report and validated any changes
submitted by the client in response to previously communicated issues.

Additionally, given the nascent Stellar-Soroban development and auditing community, we
reviewed this list of known Ethereum security vulnerabilities and attack vectors and checked
whether they apply to the smart contracts and scripts; if they apply, we checked whether the
code is vulnerable to them.

9/25

https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities

Platform Features and Logic Description
StellarBroker is a multi-source liquidity aggregator and swap router specifically designed for the
Stellar network. It aims to solve the issue of fragmented liquidity across the various trading
venues on Stellar, including the built-in decentralized exchange (DEX) and automated market
makers (AMMs). By providing a unified interface, StellarBroker allows users to find the best
prices and execute trades efficiently by routing orders through the optimal combination of
available liquidity pools.

At the time of writing, StellarBroker uses Soroswap, Aquarius (stable swap and constant market
maker formulas), Phoenix, and Comet protocols as liquidity sources.

The project achieves this by analyzing the depth and pricing across different exchanges and
protocols in real-time. When a user initiates a swap, StellarBroker's smart routing algorithm
determines the most cost-effective way to execute the trade, potentially splitting the order
across multiple sources to get the best overall outcome. This not only improves price execution
for users but also simplifies the trading experience by abstracting away the complexity of
interacting with multiple individual platforms. For applications integrating with StellarBroker, it
offers a reliable execution flow and a seamless API.

With the swap path(s) formulated using StellarBroker's interface or API, the smart contract in the
scope of this engagement is invoked. It is tasked with executing the swaps according to the
desired paths provided as parameters by the caller.

StellarBroker contract

The StellarBroker contract is responsible for enabling users to atomically execute a sequence of
token swaps following one or more trade routes. It considers only two possible actors in its
expected operations: the administrator, and normal users.

See the diagram in Figure 1 for the interface of interactions of the StellarBroker contract.
Administrative functions are identified by their bold function name.

10/25

https://stellar.broker/

Figure 1: StellarBroker contract's interface and related actors.

The administrator is defined as the caller of the init contract function, which sets the instance
storage entry for the administrative address (ADMIN) and extends the instance storage of the
contract. init can only be called once, as it validates if the ADMIN storage entry is populated
or not to prevent it from being overridden.

With the administrator set, the contract can now be updated using the update_contract
endpoint, which validates the caller address against the ADMIN storage entry before updating
the contract WASM. The other endpoint exclusive to the admin is the enable_protocol
endpoint, which is used to either enable or disable a specific protocol based on an identification
number ranging from 0 to 4. These numbers are used as identifiers for, respectively, the
Aquarius Constant AMM, Aquarius StableSwap, Soroswap, Comet, and Phoenix protocols.

The remaining administrative function, withdraw , can be used by the contract administrator to
withdraw any amount of tokens from the broker contract. It is intended to be used primarily for
fee withdrawing but can be used in a scenario where assets are mistakenly sent to this smart
contract.

Finally, the core functionality of the StellarBroker contract is contained in the swap function. It
receives the following parameters:

11/25

selling : indicates the address of the token that initiates all swap routes (i.e., the token
being sold);
routes : a vector containing a sequence of routes, where each route represents a trade

path for a fraction of the total amount of tokens being sold;
trader : address of the individual who would like to perform the swap (the caller);
vfee : fee taken from the profit of the operation (1000 representing 100%);
ffee : fixed fee over the total amount of tokens bought in the operation (1000 representing

100%);
fpath : path of trades for converting the bought token into the fee token, in case the

bought token has a different address than the fee token;

Although not enforced by the contract's logic, USDC is designated as the fee token according to
the client's intended design. Practically, from a business logic perspective, the token used as
the fee will not matter, as the administrator of the contract has the power to withdraw any token
accumulated in the contract.

While selling , trader , vfee , and ffee are relatively straightforward parameters, routes
and fpath , composite elements, can be broken down to better understand how the swaps are
performed.

routes is a vector of a struct named Route . A route will represent a part of the total
sequence of trades to obtain the buying asset. It is composed of an amount integer, which is
how much of the selling asset will be traded in this route; a min integer, which represents the
minimum accepted amount of the buying asset that the swaps in this route should return; an
estimated integer, which represents the expected amount that the swaps in this route should

return; and a path , which is a vector of PathStep .

PathStep is a structure that represents a single swap in a sequence of trades. It is composed
of a protocol enumerator, representing the identifier of which protocol will be used to perform
the swap; an asset address, which represents the asset being bought in that specific step; a
pool address, representing the specific liquidity pool of the specified protocol in which the

swap will be performed; and two integers si and bi , which work as helpers to identify the
buying and selling assets being exchanged. A chain of PathStep s will determine a trading
route starting on a pre-defined selling asset and ending on the desired buying asset.

To visualize all this, imagine that a user wants to perform a trade of 200 XLM to USDC. Using
StellarBroker's interface or API, the user obtains the optimal trading route and is now ready to

12/25

call the broker smart contract. The selling address is XLM's token address, the trader
address is his own address, vfee and ffee will be values defined by the platform based on
how much will be charged from the operation's profit and swapped amount. The routes vector,
with illustrative values, can be observed in Figure 2.

Figure 2: Sample Routes vector provided as a parameter for a swap operation (illustrative
values).

Notice that, for this trade, the illustrative optimal route has been broken into two, each with half
of the total value of the selling token being exchanged. One goes from XLM to USDx via the

13/25

Soroswap protocol and then converts the obtained USDx to USDC via an Aqua Stableswap
pool, while a second route goes directly from XLM to USDC via the Comet protocol.

With the elements of the routes vector, it is possible to calculate the total amount of USDC
bought, the minimum amount accepted of USDC (considering loss to slippage), and the actual
estimated amount of USDC that should have been received. Furthermore, the actual returned
value for each route is obtained when performing the swaps, and the sum of the bought token
obtained will be used, together with the estimated amount that should have been bought, to
calculate both the profit and the fees to be paid by this operation.

Considering that this operation's target token is USDC, and USDC is the fee token, fpath will
be an empty vector as the fee is directly extracted from the bought amount. In a scenario where
the buying or selling token is not the fee token, a vector of PathStep s must be provided,
containing a trade path from the bought token to the fee token.

14/25

Invariants
During the audit, invariants were defined and used to guide part of our search for possible
issues with StellarBroker's contract. Using the client's documentation, intended business logic,
and references collected during the audit, we identified the following invariants:

For any swapping operation performed, all token balances of the contract must either grow
or stay the same;
Users receive at least as much as the expected amount out for their swaps (according to
the path’s minimum bought amount);
Token amount accrued as fees can only be withdrawn by the administrator;
Each swap operation must result in exactly one asset leaving the caller’s wallet and one
asset being received, regardless of the number of routes used.
Only enabled protocols can be used for swapping operations;
Only the administrative figure can enable or disable protocols;
It should not be possible to change the administrative address without updating the
contract;
Any transactions that disrespect the previous invariants should lead the contract to a panic
state.

15/25

Findings
Findings presented in this section are issues that can cause the system to fail, malfunction,
and/or be exploited, and should be properly addressed.

All findings have a severity level and an execution difficulty level, ranging from low to high, as
well as categories in which it fits. For more information about the classifications of the findings,
refer to our Smart Contract Analysis page (adaptations performed where applicable).

16/25

https://runtimeverification.com/smartcontract-analysis

[A1] Swaps May Lead to the Accumulated
Fees Drainage

Severity: Medium Difficulty: Low Recommended Action: Fix Design Addressed by client

Description

As mentioned in the Platform Features and Logic Description section, a user that wishes to
perform swaps through the StellarBroker contract must provide information about the assets
being sold, as well as information about the routes taken to perform the swap, encoded in
PathStep s.

When specifying each step of the trade route from the selling to the buying asset, the user also
provides the address of the liquidity pool in which the assets will be exchanged. The
aggravating detail here is that no validation over the address of this liquidity pool is performed,
nor does the StellarBroker contract keep a reference to trusted liquidity pools. Therefore, when
providing the address of the liquidity pool for a specific step, a malicious user may provide a
contract address that implements the interface of that liquidity pool but, in practice, executes
whatever code this third party wishes to.

It is important to highlight that, at the time of writing, the only exploitation identified and
demonstrated was the drainage of tokens in the smart contract. Still, we note that this is
achieved through executing code contained in an unverified, potentially user-provided smart
contract. The depth of the consequences of this is not made immediately clear, given all the
available functionalities that are and will be implemented in Stellar's ecosystem, as well as the
unpredictability of complex systems when integrated with code of arbitrary content.

Scenario

The following is a sample exploit scenario that uses the abovementioned properties to drain
assets held by the StellarBroker contract. It was implemented as a Komet test and provided to
the client as a part of the audit deliverables.

Assume the broker contract has accumulated XLM tokens (e.g., from prior swaps as fees). An
attacker performs a 2-step swap: USDC -> XLM -> EURC, and exploits the broker's failure to

17/25

https://komet.runtimeverification.com/

verify actual token transfers at each step to drain XLM from the contract.

1. The attacker deploys a fake Comet contract that implements the real Comet interface.

It is initialized with the address of the final output token (EURC) and the amount of
XLM to steal (denoted N).
The fake contract initially holds 1 EURC to satisfy the final output requirement.

2. The attacker constructs a 2-step swap route through the broker: USDC -> XLM -> EURC.

The fake Comet is used as the liquidity pool contract for both swaps.
The swap starts with 1 USDC.

3. Execution flow:

The broker receives 1 USDC from the attacker.
It calls the fake Comet to perform the first swap (USDC -> XLM).

The fake contract pulls 1 USDC from the broker but does not transfer any XLM.
Instead, it returns N as the simulated output amount.

Believing the swap succeeded, the broker proceeds to the second swap.
It calls the fake Comet to swap N XLM -> EURC.

The broker transfers N XLM (its own tokens) to the fake contract.
The fake contract sends back 1 EURC (from its initial balance).

The broker verifies only the final EURC output and considers the swap successful.
It completes the swap by transferring 1 EURC to the attacker.

4. Outcome:

The attacker receives 1 EURC in exchange for 1 USDC.
The broker has unknowingly lost N XLM to the attacker.
This is possible because intermediate token transfers are not validated—only return
values are trusted.

Recommendation

Validate that liquidity pools being invoked are trusted. This can be achieved by managing the
addresses of trusted pools on a map, validating if a provided pool address is present in the map

18/25

and is tagged as enabled.

Status

The client has addressed this finding by enforcing the correct progression of the fee balance at
every swap. If a malicious third-party contract attempts to drain assets held in the broker, given
that the broker should only hold a number of the fee assets, any attempt to drain contract funds
will fail.

19/25

[A2] The Protocol May Incorrectly Handle
Fees

Severity: Low Difficulty: Low Recommended Action: Fix Code Addressed by client

Description

When performing a swap, the amount of assets bought, together with the fee percentages, are
used to calculate the fees and subtract a fraction of the buying or selling token amounts. The
balance from which the fee is deducted depends on whether the fee asset is the same as the
buying token.

According to its initial implementation, if the user does not provide a fee path (fpath) when
calling the swap function, or if the fee asset acquired from that fee path is the same as the
buying asset, no modification to the value of the asset balances is performed, as the protocol
will use zero as the value of the calculated received fees. Therefore, no fees will be charged
from that swap, regardless of the percentage of fees that have been provided for charging the
operation.

Recommendation

If a fee path is not provided, or if it is provided and the obtained asset from this path is the
buying asset, deduct the fee amount from the buying asset balance.

Status

The client has addressed this finding by following the recommendation above.

20/25

[A3] Parametric Fees Enable Users to Deny
Profit For the Protocol

Severity: Low Difficulty: High Recommended Action: Fix Design Not addressed by client

Description

Fees collected from the swap operations executed through the StellarBroker contract define the
protocol's revenue. These fees are calculated based on the amount of the swap operation, the
profit obtained from using the StellarBroker, and fee percentages informed by the callers as
parameters of the swap function.

Considering that the fees are parametric, a user who wishes to deny profit to the broker contract
can provide zero as the value for the fees when calling the swap function.

It is important to highlight that a user cannot use StellarBroker's API to obtain a sample
transaction and modify its parameters; the process of building and submitting the transaction is
performed on the server side. Furthermore, doing this while using general transaction
information inferred from any available interface for transaction signature would be considerably
complex, considering the time taken to generate the transaction by the StellarBroker server.

This finding could only be exploited if the user either finds a performative way to use a
transaction generated by the StellarBroker server and modifies the fees parameters, or
generates their own routing algorithm while still using StellarBroker's contract for executing the
swaps. Both approaches are likely impractical due to the complexity and technical effort
involved.

Recommendation

To prevent users from bypassing fee collection, consider enforcing fixed fee values within the
contract logic, rather than accepting them as user-provided parameters.

Status

This finding has been acknowledged by the client.

21/25

Informative Findings
The findings presented in this section do not necessarily represent any flaw in the code itself.
However, they indicate areas where the code may need external support or deviate from best
practices. We have also included information on potential code size reductions and remarks on
the operational perspective of the contract.

22/25

[B1] Best practices recommendations
Severity: Informative Recommended Action: Fix Code Partially addressed by client

Description

Here are some notes on the protocol's particularities, comments, and suggestions to improve
the code or the business logic of the protocol in a best-practice sense. They do not present
issues with the audited protocol themselves. Still, they are advised to either be aware of or to
follow when possible, and they may explain minor unexpected behaviors in the deployed
project.

1. There is a redundant check on the update_contract function. Using the
!e.is_initialized() validation, the contract checks if the ADMIN storage is populated

and fails if it isn't. Consecutively, it checks if the caller is the administrator. If the ADMIN
storage hasn't been populated at this point, this second validation will fail regardless;

2. In the swap function, the fee asset can be fetched twice with the same results in lines 154
and 160;

3. When extending the contract instance storage Time-To-Live, the contract has a fixed
extension time that can be triggered by any user, and this may cause arbitrary users to be
tasked with the contract's TTL extension cost;

4. The release profile in Cargo.toml includes the overflow-checks = true flag, which
enforces overflow and underflow checks in arithmetic operations. However, the codebase
uses checked_* arithmetic operations followed by unwrap() , which reduces the code
readability and defeats the purpose of using the compilation flag.

Recommendation

For each of the topics elaborated above, we recommend implementing the following
approaches into the protocol's contracts:

1. Remove the !e.is_initialized() validation from the update_contract function;
2. Remove the redundant fetch of the fee asset in line 160;
3. Have different instance TTL extension thresholds for different actors, using a lower

threshold for users and a higher threshold for the admin, preventing users from performing

23/25

the contracts instance storage TTL extension unless strictly necessary;
4. Use direct arithmetic operations instead of checked_* functions when the

overflow-checks = true compiler flag is enabled, as it already enforces overflow checks.

Status

The client has partially addressed this finding by following the recommendations for topics 1, 2,
and 3 discussed above. Topic 4 was acknowledged for the sake of unified code styling and
future-proofing.

24/25

[B2] The Fee Path May Lead to Arbitrary
Assets

Severity: Informative Recommended Action: Fix Design Addressed by client

Description

The purpose of the fee path (fpath) is to provide a way to convert the asset bought into an
acceptable fee to the StellarBroker protocol, which, according to the client's design, is supposed
to be the USDC token.

The fee path is obtained from a parametrized variable. While this simplifies the processing of
the path to the StellarBroker contract, a user can provide arbitrary paths when performing swap
operations, and these swaps may not necessarily end in the desired fee asset.

Considering that the administrator has the capability to withdraw any tokens held by the broker
contract, this finding does not constitute a threat of any severity to the StellarBroker protocol.

Recommendation

When necessary, enforce that the fee path correctly leads from the buying token to the fee
token.

Status

This finding has been addressed by the client with the modifications concerning finding [A1]
Swaps May Lead to the Accumulated Fees Drainage.

25/25

