Security Audit Report

Wasmi - WebAssembly (Wasm)
Interpreter s

Delivered: November 27, 2024

Prepared for Stellar Network by

17129

runtime
verification

2/129

https://runtimeverification.com/
https://runtimeverification.com/

Table of Contents

¢ Disclaimer
e Executive Summary
e Goal
e Scope
+ Methodology
e Platform Logic and Features Description
» Code Review Discussion and Findings
e [C1] CompiledFuncEntity can take more than u32::MAX entries
¢ [C2] Inconsistencies in RegisterAlloc Bounds
¢ [C3] Underestimated Fuel Consumption of Table and Memory Instructions
e [C4] Large inputs to raw pointer functions may cause undefined behaviour depending
on target
o [CI1] Best Practices and Notable Particularities
e [CI2] Results of cargo-audit
e [CI3] visit_input_registers does not visit all registers of a RegisterSpan
e [Cl4] Missing copy in select translation
e Suggested Executor Assertions
» Translation Output Validation

¢ Fuzzing Discussion and Findings
e [F1] Abort on realloc() due to faulty br_table optimization
o [F2] Translator debug assertion fired due to ref.is_null constant propagation
e [F3] Segmentation fault due to visit_input_regs bug
¢ [F4] Output mismatch between Wasmi and Wasmtime #1
¢ [F5] Output mismatch between Wasmi and Wasmtime #2
¢ [F6] Output mismatch between Wasmi and Wasmtime #3
o [F7] Executor hang on unreleased version due to copy_span bug
o [F8] Executor panic on unreleased version due to br_table_many bug

o Appendix
o Appendix: Wasmi Instruction Set Overview
e Appendix: Engine Class Diagrams

3/129

e Appendix: FuncTranslator Class Diagrams
e Appendix: Translation Sequence Diagrams
o Appendix: Algorithmic Description of the Translator
e Control Instructions
e Parametric Instructions
¢ Variable Instructions
* Reference Instructions
e Numeric Instructions
¢ Vector Instructions
¢ Table Instructions
e Memory Instructions

o Appendix: unsafe Rust Checklist

4/129

Disclaimer

This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided by you or is otherwise publicly
available, there are likely additional unknown risks which otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of
this system. This report is for informational purposes only and is provided on an "as-is" basis
and you acknowledge and agree that you are making use of this report and the information
contained herein at your own risk. The preparers of this report make no representations or
warranties of any kind, either express or implied, regarding the information in or the use of this
report and shall not be liable to you or any third parties for any acts or omissions undertaken by
you or any third parties based on the information contained herein.

Blockchain technology is still a nascent software arena, and any related implementation and
public offering carries substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large quantity
of funds.

5/129

Executive Summary

Stellar Network engaged Runtime Verification Inc. to conduct a security audit of the Wasmi
interpreter, which Wasmi Labs is custodian of. The objective was to review the logic and
implementation of critical components of the interpreter and identify any issues that could cause
erroneous or undefined behavior that may lead to exploitation or malicious interaction with the
Stellar network.

The audit was conducted over the course of 8 calendar weeks (August 21, 2024, through
October 16, 2024) and focused primarily on analyzing the executor and translator crates of the
interpreter, as well as the abstract relationship between Wasm and Wasmi. Given the large
volume and high complexity of code comprising the interpreter, a unique approach was taken to
the audit that would result in highest guarantees possible for the allocated time frame. The audit
would have two surfaces of analysis, a best effort code review approaching components in
order of priority, and dedicated fuzzing using a variety of fuzzers and configurations.

The Wasmi codebase is in excellent shape: Code is generally well-organized, adheres to Rust
best practices and contains informative doc comments in various places, as well as
explanations for particular invariants which may be unobvious.

The audit led to identifying issues of potential severity for the protocol’s health, which have been
identified as follows:

¢ Errors in exceeding bounds: CompiledFuncEntity can take more than u32::MAX entries,
Inconsistencies in RegisterAlloc Bounds, Large inputs to raw pointer functions may
cause undefined behaviour depending on target
e An error in fuel computation: Underestimated Fuel Consumption of Table and Memory
Instructions
+ Differences between Wasmi's execution and other WebAssembly interpreters:
e Qutput mismatch between Wasmi and Wasmtime #1
e QOutput mismatch between Wasmi and Wasmtime #2
¢ QOutput mismatch between Wasmi and Wasmtime #3

e Acrash due to a bug in instruction optimizations: Abort on realloc() due to faulty
br_table optimization

6/129

https://stellar.org/
https://runtimeverification.com/
https://github.com/wasmi-labs/

A failed assertion due to a translation optimization: Translator debug assertion fired due to
ref.is_null constant propagation
A segmentation fault due to a missed case in a visitor: Segmentation fault due to

visit_input_regs bug
A hang due to faulty logic in an instructions execution: Executor hang on unreleased

version due to copy_span bug
A crash due to a miscalculated branch table offset: Executor panic on unreleased version
due to br_table_many bug

In addition, several informative findings, contributions, and general recommendations also have
been made, including:

e Improvements in Best Practices and Notable Particularities

e Results of cargo-audit , an automatic dependency analysis

+ Documenting a shortfall of a helper function: visit input registers does not visit all
registers of a RegisterSpan

¢ A potentially unsound optimization in translation: Missing copy in select translation

e Suggestions involving validation post translation: Suggested Executor Assertions,
Translation Output Validation

¢ Open Source Contributions

Additionally, the document contains a high-level description of Wasmi's design:

* An overview of the Wasmi translation and execution process: Platform Logic and Features
Description
« Appendices to complement the description:
» Areference of the Wasmi instruction set: Appendix: Wasmi Instruction Set Overview
« Diagrams that visualize the translation process: Appendix: Translation Sequence
Diagrams
¢ Diagrams that visualize the data structures used for translation and execution:
Appendix: Engine Class Diagrams, Appendix: FuncTranslator Class Diagrams
» A detailed description of the translation process: Appendix: Algorithmic Description of
the Translator

At the time of writing, all crashes and output differences have been fixed both in Wasmi's main
line as well as in a branch of ve.36.* versions. The potential errors in exceeding bounds and

7/129

https://github.com/runtimeverification/_audits_wasmi-labs_wasmi/issues/43

the fuel miscalculation have been acknowledged but not addressed. Informative findings and
suggestions have been acknowledged and partially addressed in Wasmi's main line.

8/129

Goal

Given the large volume and high complexity of code comprising the interpreter, Runtime
Verification Inc. and Stellar Network agreed on an approach to the audit that would maximize
the coverage and quality of analysis performed in the allocated time for the audit. Unfortunately
total analysis of such a large and complicated code base would be impossible to achieve in the
allocated 8 weeks. Furthermore, the on-going work on the interpreter means there is potential
that updates could occur in the future, leaving the value of the analysis locked to a particular
version eventually only used for legacy versions of Stellar. Therefore, the approach that would
be taken was one of both dynamic analysis with fuzzing and simultaneous code review, with an
additional eye towards possible future developments of both Stellar and Wasmi. To elaborate on
these branches:

1. Dynamic Analysis focused on fuzzing the translator and executor with structured bytecode,
utilizing a variety of fuzzing tools both standard and custom to effectively detect possible
crashes, identify mismatches with other Wasm implementations, and reveal possible DoS
vectors.

2. Code Review for the duration of the audit would prioritize recently added logic to the target
of the audit (v0.36.0) as there is likely to be more chance of finding errors in newer code.
Furthermore, code that had high amounts of unsafe usage would be prioritized, followed
by code that has high complexity. This meant that focus would be first directed to the
executor, then the translator module, with any remaining code being reviewed should time
allow;

The audit focuses on identifying issues in the interpreter’s logic and implementation that could
potentially create erroneous or undefined behavior and therefore render Stellar network
vulnerable to attacks or cause it to malfunction. Furthermore, the audit highlights informative
findings that could be used to improve the safety, efficiency, or readability of the implementation.

9/129

https://github.com/wasmi-labs/wasmi/releases/tag/v0.36.0

Scope

The scope of the audit is limited to the code contained in a public Github repository provided by
the client (wasmi-labs/wasmi). The version that is the target of the audit is tagged release
v0.36.0 which has commit hash 02621ad7a7f769dc97524075a693cc96e2049ch5 .

Within the repository are multiple crates and files, some of which are highlighted as in the scope
of the audit. The repository and relevant crates and files are described below:

e crates/
e cli/ :entrypoint for fuzzing and code inspection
e collections/ : helper data structures
e core/ :foundational data and error types for Wasmi execution and translation
e wasmi/
e engine/
e bytecode :Wasmi instruction set
e executor :Wasmiexecution implementation
e translator/ :translation from Wasm to Wasmi

e fuzz/ :fuzz testing harness

The comments provided in the code, a general description of the project, including samples of
tests used for interacting with the platform, and online documentation provided by the client
were used as reference material.

The audit's focus is the translation of Wasm to Wasmi bytecode and the execution of Wasmi
bytecode, in the engine directory of the wasmi crate. It is limited in scope to the artifacts listed
above.

Commits addressing the findings presented in this report (with versions ©0.36.1-5) have also
been analyzed to ensure the resolution of potential issues.

10/129

https://github.com/wasmi-labs/wasmi/
https://github.com/wasmi-labs/wasmi/releases/tag/v0.36.0
https://github.com/wasmi-labs/wasmi/commit/02621ad7a7f769dc97524075a693cc96e2049cb5
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine

Methodology

As mentioned in section Goal, this audit will have two parallel streams of analysis running: code
review, and dynamic analysis through fuzzing. The methodology for each will be described
separately.

Findings will be classified according to the Runtime Verification Audit Methodology.

Code Review

It should be restated that manual code review cannot guarantee to find all possible security
vulnerabilities as mentioned in Disclaimer, however we have followed the approaches described
below to make our audit as thorough as possible.

First, we rigorously reasoned about the intention and design logic of the code, seeking to
understand the intention of the Wasmi interpreter design choices, to evaluate if the current
implementation is susceptible to security-critical design flaws and to ensure the absence of
loopholes in the design logic. To this end, we first carefully analysed the specification of Wasm
and understood it's relation to Wasmi, seeking to understand the proposed features of Wasmi
and the differences and similarities between the two (details of which are located in Platform
Logic and Features Description). We also created design documents and artefacts that we
communicated with the client to ensure that our mental model of the design and implementation
is accurate.

Second we began review of the Wasmi v0.36.0 source code, focusing on the engine and
translator crates that perform the translation from Wasm to Wasmi before execution. The review
aimed to ensure that the intended features of Wasmi are indeed implemented error free, and
that unintended extra behaviors which may be exploitable are not implemented. Wasmi
translation performs optimization of Wasm bytecode, such as constant propagation, or op-code
fusion. As part of our analysis we documented the translation from Wasm to Wasmi and
produced the first specification of Wasmi external to the source code.

Another priority that concerns the Stellar Network is that v0.36.0 introduces many instances of
unsafe code in the upgraded executor crate. Usage of unsafe may present a higher risk of
error, since the compiler will relax its guarantees of safety in order to provide the extra features

unavailable in safe code. The canonical way to determine safety for unsafe usage is to
understand the invariants that must be upheld by the usage (often listed in the data structures
documentation), and to provide a safety comment that details how the calling / contextual code

11/129

https://runtimeverification.com/smartcontract-analysis

is upholding that invariant. As part of our analysis we inspected each usage of unsafe and
endeavour to ensure the invariants are upheld and that the safety comment communicates that
accurately.

Fuzzing

To augment our code review, we additionally ran a fuzzing campaign - feeding a barrage of
random inputs to the program-under-test as a means to dynamically identify vulnerabilities
which might be overlooked by manual review alone. This campaign primarily focused on Wasmi
v0.36.0, but eventually switched to the v0.36.x-dev branch to avoid re-encountering the same
issues after they were identified and patched. At times, we discovered "shallow" bugs or
crashes which prevented the fuzzer from reaching deeper code paths, and we switched to
fuzzing the current Wasmi main in the interim until these issues were patched.

We began our fuzzing campaign by identifying testable properties that are expected to hold
across all inputs. With Wasmi, later stages of the translation and execution pipeline make
implicit assumptions about the correctness of earlier stages (see Translation Output Validation).
The resulting interconnectedness makes it difficult to isolate smaller sub-components and their
associated invariants, particularly given the scope of the audit relative to the size of the code
base. Moreover, fuzzing is a randomized process which benefits from a large humber of
iterations, so given finite time and compute power, there's a trade-off between the total number
of tested properties versus the amount of resources dedicated to testing each one individually.

For all these reasons, we decided the most effective approach was to focus our efforts and
resources on a narrowly selected set of end-to-end invariants of the entire interpretation
pipeline. This allows these properties to be very thoroughly tested, and the end-to-end nature
ensures all components are still covered while increasing the likelihood of identifying
vulnerabilities caused exactly by the aforementioned interconnectedness.

To accomplish this end-to-end testing, we generated random Wasm modules, then translated
and executed each exported function with randomly generated arguments. We verified memory
safety and crash-freedom by running this process with sanitizer instrumentation and debug
assertions enabled, and verified functional correctness through differential fuzzing which tests
conformance against another established Wasm implementation (wasmtime). Further details
are given in Fuzzing Discussion and Findings.

We also gave equal care to how these random inputs are generated, ensuring that our
properties are tested against a diversity of inputs adequately covering edge cases. At a high-

12/129

https://github.com/bytecodealliance/wasmtime

level, most fuzzers proceed in the same way: generating random inputs, running them and
gathering feedback, then using this feedback to inform the generation of new inputs. However,
the particulars of this process varies greatly between tools - using different metrics to decide
which inputs are interesting, different mutation strategies to produce new inputs, etc. - making it
important to consider multiple options.

Among prominent fuzzers, standard benchmarking such as FuzzBench consistently shows two
top contenders for general-purpose fuzzing effectiveness: AFL++ and honggfuzz. We did initial
exploratory runs with both of these top choices, using afl.rs and honggfuzz-rs to integrate with
the Rust code. For our particular targets, we found that both achieved similar levels of
effectiveness, but honggfuzz scaled better across cores out-of-the-box without the need to
optimally configure advanced aspects of AFL++. Additionally, honggfuzz can take advantage of
more information sources directly from the hardware, allowing faster iteration time by avoiding
instrumentation when desired, as well as providing a base for the custom execution-time based
fuzzing we describe later.

Honggfuzz is structure-unaware, meaning that it generates inputs which are simply raw byte
sequences, and the test code itself is responsibility for converting that &[us] seed into more
structured data. Care must be taken to ensure that this interacts well with the employed
mutation strategies - that small mutations of the input seed produce small changes in the
structured data. For generating Wasm modules, this functionality is already offered by the
wasm-smith crate, with configuration to enable or disable various Wasm features. To focus on
vulnerabilities relevant to Soroban, we extended wasm-smith's configuration with an option to
disable the generation of floating-point instructions and types, and this was later merged into
wasm-smith v0.218.0.

With a basic harness set up, our strategy was then to continually refine these harnesses by
repeating the following steps:

1. Start the fuzzer on the given harness, leaving it running continuously in the background.
2. While that long-running harness makes progress, repeatedly
1. Inspect any code coverage and performance information.
2. Based on the collected information, tweak the configuration or test code.
3. Do a shorter fuzzing run to explore if the changes were beneficial, deciding whether
they should be kept or reverted.

13/129

https://github.com/google/fuzzbench
https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/honggfuzz
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/honggfuzz-rs
https://aflplus.plus/docs/power_schedules/
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith

3. Once the long running harness fails to find any new interesting inputs over a large span of
time, or if a significantly better configuration is found, switch the long-running harness to the
new configuration.

This process ensures that our compute resources are fully utilized for the duration of the audit,
enabling us to collectively perform a very large number of iterations, while still doing the
exploratory work needed to achieve a high-level of effectiveness.

14/129

Platform Logic and Features Description

Wasmi is an efficient and lightweight WebAssembly interpreter with a focus on constrained and

embedded systems. It relies on translating the stack-based Wasm bytecode to Wasmi's internal,
register-based instruction set. Conceptually, the Wasmi processing pipeline thus consists of the
following steps:

1. Compilation. Parsing the Wasm bytecode, validating the parsed module, and translating
the parsed module into Wasmi's internal representation.
2. Execution. Interpreting a function compiled to Wasmi.

Compilation

During compilation, a Wasm module, represented as bytecode, is parsed, validated and
translated into Wasmi's internal data structure for representing programs, called a code map
(see codeMap in Appendix: Engine Class Diagrams) that the execution phase interprets.
Parsing and validation relies on the external wasmparser-nostd crate, a fork of wasmparser .

Module compilation has the following steps:

1. Processing the module header.
2. Processing functions.
3. Processing the data section.

Module header and data section processing include parsing and validating the input payload by
payload, then storing the processed data. In addition to validation as defined by the Wasm
specification, Wasmi also enforces structural limits defined in its configuration, e.g. on the
maximal number of global variables (see config in Appendix: Engine Class Diagrams).

This is always done eagerly, i.e. when compiling a given module. However, Wasmi provides
different compilation modes that enable processing functions lazily:

1. Eager. All functions are parsed, validated and translated eagerly.

2. Lazy translation. All functions are parsed and validated eagerly, but translated lazily on
first use.

3. Lazy. All functions are parsed, validated and translated lazily on first use.

15/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs
https://docs.rs/wasmparser-nostd/latest/wasmparser_nostd/
https://docs.rs/wasmparser/latest/wasmparser/
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L153-L168

Additionally, function validation may be skipped altogether in all compilation modes. The module
parsing, validation and translation process is shown in detail (for the eager setting) in Appendix:
Translation Sequence Diagrams.

During compilation, the code map is populated with FunceEntity instances. In eager mode,
functions are translated into compiledFuncEntity instances. Such an object stores all data,
necessary to execute the given function, in particular, a sequence of Wasmi instructions. In lazy
and lazy translation modes, a function is represented as an UncompiledFuncEntity that stores
the byte code and the module header that enable translating (and optionally, validating) the
function on-demand.

Translation Algorithm
Translation transforms a stack-based Wasm program into a register-based Wasmi program.

The function translator is implemented as a visitor over wasmparser 's instruction AST (i.e.
implements the visitoperator trait) that is invoked when an instruction is parsed. Hence
translation is tightly coupled with the parsing process (as is validation). Throughout the
translation process, several compiler optimizations are applied, e.g. constant propagation,
peephole optimization, dead code elimination, and opcode fusion. After linearly processing each
instruction, a finalization step is performed that resolves labels and consolidates the register
space.

For a per-instruction description of the translation process, see Appendix: Algorithmic
Description of the Translator.

Data structures used in the translation process are depicted in Appendix: FuncTranslator
Class Diagrams.

Example

We're going to demonstrate the translation process on a simple example. Consider the following
Wasm function:

func (param 132) (result 132)
local.get 0
if (result 132)
i32.const 1
else
132.const 2
end
return
end

16/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L398-L413
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/mod.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit.rs

When translating this function, as an initialization step, a new control frame for the function body
is pushed onto the control stack (see ControlFrame and ControlStack in Appendix:
FuncTranslator Class Diagrams) that tracks information about the current control structure.
For example, a new symbolic label, say, Lo , is created and stored in the control frame to
represent the jump location at the end of the function. Since the concrete address is not yet
known, it will be resolved later when visiting the corresponding end instruction (and in some
cases during the finalization step).

Next local.get 0 is processed, and a new tagged provider (wrapping the register storing the
value for local 0, say, R0) is pushed onto the value stack (see TaggedProvider and
ValueStack in Appendix: FuncTranslator Class Diagrams).

Next, if i32 is processed, and a new control frame is pushed which tracks the if with,
among other things, labels for the end of the if-else block and the start of the else branch
(say, L1 and L2, respectively). Since the if produces an i32 value, a new register, R1 ,is
allocated to hold the result of the control structure. At the same time, the provider is consumed
from the stack, and the first (albeit incomplete) instruction is generated using the instruction
encoder (see InstrEncoder in Appendix: FuncTranslator Class Diagrams):

branch_i32_eq_imm RO 0 L2

encoding that, if register ro is o, then jump to the (yet unknown) destination L2 (the else
branch), otherwise continue with the next instruction (the then branch).

Next, i32.const 1 is processed, which pushes the constant value 1 onto the value stack.

Next, else is processed, which marks (1) the end of the then branch (2) the start of the
else branch. Accordingly, the value stack is popped and pushed, and label L2 is pinned.
Also, 1 is popped from the value stack, and two new instructions are generated:

copy_imm32 R1 1
branch L1

which writes the if -resultinto RrR1,then jumps after the if-else block.
Next, i32.const 2 is processed, which pushes the constant value 2 onto the value stack.

Next, end is processed, which marks the end of the if-else block. Accordingly, the control
stack is popped, and L1 is pinned. Also, 2 is popped from the value stack and rR1 is pushed
onto it to produce the result of the if-else block, and a new instruction is generated:

copy_imm32 R1 2

17/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/control_frame.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/control_stack.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/provider.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/mod.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs

which writes the else -resultinto RrR1 .

Next, return is processed, which simply pops the value stack and generates

return_reg R1

Finally, end is processed, which marks the end of the function body, and the control stack is
popped.

The following finalization step then resolves labels and jump offsets in instructions, thus the final
Wasmi program is

branch_i32_eq_imm RO 0 3

copy_imm32 R1 1

branch 2

copy_imm32 R1 2
return_reg R1

Execution

Wasmi execution is relatively straightforward. For each function call, a call frame is pushed onto
the call stack, and function local constants, function arguments, and function locals are
allocated and initialized on the value stack, the execution-time equivalent of the class with the
same name used for translation (see EngineStacks in Appendix: Engine Class Diagrams).
The instructions stored in the code map are then interpreted, mutating the call and value stacks.

Continuing the example above, let's assume that the translated function has been called with an
i32 argument arg .

e The function body instructions and their addresses are

Address Wasmi-Instruction

i branch_i32_eq_imm RO 0 3
i+l copy_imm32 R1 1

i+2 branch 2

i+3 copy_imm32 R1 2

i+4 return_reg R1

e A callFrame has been added to the call stack. It indicates where in the caller’'s register
slots the single i32 result should be written (R3 for the sake of an example), and
contains the instruction pointer of the code to execute (starting at address i), as well as
offsets into the value stack;

« Avalue frame" of size 2 has been added to the value stack. It contains the single i32
argument arg in register slot ro , and an additional register slot R1 to use in the function

18/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/calls.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs

body (initialised with ©).

* Both frame offset and base offset pointers in the callFrame pointto the register slot Ro .
If the function was using constants, they would be allocated before this slot (accessed with
negative register numbers), and the frame pointer would point to the first constant.

R CallFrame ----------------------- |
| InstrPtr | frame_offset | base_offset | results | flag |
_________________________ |_________ e, o, . |_____
...prior call stack... | 1 | * | * | R3 |false |
/ /
—————————— /
) e e e e e emeooooo-.
|/
|
\%
| R3 | | RO | RL |
—————————————————————————————— [-c-- ===
...prior value stack... | arg | 0 |

Execution:

¢ Execution starts by reading the instruction at address i , which is branch_i32_eq_imm .
This compound (fused) instruction compares the arg in register slot rRo to the immediate
value o and performs a branch if the resultis true .

e If the two values are equal (i.e., result 1 for true), the instruction pointer will be
incremented by 3, and i+3 is the next instruction.

¢ This instruction copy_imm32 will write 2 into the register slot rR1 . The value stack is
then ...| arg | 2 |
e i+4 isthe nextinstruction

e If the values are not equal (i.e., result © for false), the branch is not taken, i+1 isthe
next instruction.
e copy_imm32 will write 1 into the register slot R1 . The value stack after this is
...| arg | 1 |
e The next instruction branch increments the instruction pointer by 2 , and i+4 isthe
next instruction.

e The return_reg in i+4 performs a function return with the value from Rr1
e the value in rR1 (either 1 or 2)is written to the target destination R3 in the prior
value frame,
e the value stack size is reduced to remove R0 and R1 of the finished call,

19/129

« and the call frame is popped from the call stack.

In order for execution to be as performant as possible, the executor intensively relies on
unsafe functions. Safety of these calls mostly relies on correctness of the translation See
Translation Output Validation for further details.

20/129

Code Review Discussion and Findings

This section communicates results, data, and findings of the code review performed over the
duration of the audit. The code review was performed in accordance with section Methodology
where analysis of the translator and executor were performed; as well as specific targeted
inspection of each unsafe call.

The Wasmi codebase is generally well-organized, adheres to Rust best practices and contains
informative doc comments in various places, as well as explanations for particular invariants
which may be unobvious.

Findings presented in this section are issues that can cause the interpreter to fail, malfunction,
and/or be exploited, and should be properly addressed. Informative findings presented in this
section do not necessarily represent any flaw in the code itself. However, they indicate areas
where the code may need external support or deviate from best practices.

Translator

We performed a best-effort code review of the Translator (under
crates/wasmi/src/engine/translator). Results are summarized in the following table.

File Code Review Findings

control_frame.rs Informative findings

control_stack.rs No issues found

driver.rs Informative findings

error.rs No issues found

instr_encoder.rs Informative findings

labels.rs No issues found

mod.rs Informative findings, Missing copy in select translation
relink_result.rs Informative findings

stack/consts.rs Informative findings

stack/locals.rs No issues found

stack/mod.rs Informative findings

stack/provider.rs Informative findings

stack/register_alloc.rs Inconsistencies in RegisterAlloc Bounds
typed_value.rs No issues found

utils.rs No issues found

visit_register.rs visit_input_registers does not visit all registers of a RegisterSpan
visit.rs Informative findings

21/129

Informative findings mentioned in this table include small inconsistencies, typos, code quality
suggestions or other trivial issues in code or documentation. These have been reported directly
to the Wasmi development team as soon as detected, and are not detailed further in this report.

Commits fixing informative findings:

¢ https://github.com/wasmi-
labs/wasmi/commit/c0f79e1f8ad38847023b72feaba738ddcal3167b

¢ https://github.com/wasmi-
labs/wasmi/commit/39414e86b75e25747d84204417¢c99ba2c970f373

¢ https://github.com/wasmi-
labs/wasmi/commit/efb0329b320278f46653c561cala2c1f47750a78

Executor

We established an overview of the Wasmi instructions in comparison to corresponding Wasm
instructions. Then we inspected the implementation of each family of instructions, with a focus
on potential problems caused by their use of unsafe Rust code.

unsafe Rust Code

Throughout the wasmi code base there are various usages of unsafe . Each of these usages
expands the capabilities of Rust, and so weakens the safety guarantees typically enforced by
the Rust compiler. The conventional way to ensure that a usage of unsafe Rustis safe is to
check the safety invariants that the particular usage requires, and to write a safety comment
that details how the calling code / context upholds the invariants. As part of the audit we
inspected many usages of unsafe Rust, focusing on the unsafe Rust usage in the engine
and particularly executor (sub-)modules. Each inspection had a best effort to ensure that the
safety invariants are satisfied, and so no undefined behaviour could be expected to occur
from these locations.

A table detailing the analysis can be found in the Appendix: Appendix: unsafe Rust Checklist

22/129

https://github.com/wasmi-labs/wasmi/commit/c0f79e1f8ad38847023b72fea5a738ddca13167b
https://github.com/wasmi-labs/wasmi/commit/c0f79e1f8ad38847023b72fea5a738ddca13167b
https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/commit/efb0329b320278f46653c561ca0a2c1f47750a78
https://github.com/wasmi-labs/wasmi/commit/efb0329b320278f46653c561ca0a2c1f47750a78

[C1] CompiledFuncEntity can take more
than u32::MAX entries

Severity: Low Recommended Action: Fix Code Addressed by client

Description

Inside code_map.rs inside the engine module, the struct compiledFuncentity has a function
new with a comment that indicates that the function should panic if called with instrs length
greater than u32::MAX . However this is not enforced in the code, and testing verified it is
possible to exceed the bound without triggering a panic.

Recommendations

Likely the best course of action is to add an assertion that triggers the panic. However if it is
intended for this bound to be able to be exceeded then the comment should be removed.
Furthermore, there should be an upper bound enforced that is consistent with Wasm.

Status

This issue is fixed on main by PR#1207

23/129

https://github.com/wasmi-labs/wasmi/blob/9f465244a378c69e3b5550b5310a53b9e9f26cf0/crates/wasmi/src/engine/code_map.rs#L742
https://github.com/wasmi-labs/wasmi/pull/1207/files

[C2] Inconsistencies iIn RegisterAlloc
Bounds

Severity: Low Recommended Action: Fix Code Not addressed by client

Description

According to code inspection and discussions with the Wasmi development team, the dynamic
and preservation space of registers satisfy the following invariants of rRegisterAlloc :

dynamic(r): min_dynamic <= r < max_dynamic
preserve(r): min_preserve < r <= max_preserve
Relationship between max dynamic and min preserve

In order for the two register spaces to be distinct, max dynamic <= min preserve needs to
hold. However, RrRegisterAlloc methods do not agree whether equality is allowed or not.

For example, push dynamic() admits equality (it performs the check before applying the
increment):

Q wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 248 to 257 in 02621ad

248 pub fn push_dynamic(&mut self) -> Result<Register, Error> {

249 self.assert_alloc_phase();

250 if self.next_dynamic == self.min_preserve {

251 } return Err(Error::from(TranslationError::AllocatedTooManyRegisters));
252

253 let reg = Register::from_116(self.next_dynamic);

254 self.next_dynamic += 1;

255 self.max_dynamic = max(self.max_dynamic, self.next_dynamic);

256 Ok(reg)

257 }

whereas push dynamic_n does not (it performs the check after applying the increment):

24/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257

) wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 268 to 283 in 02621ad

268 pub fn push_dynamic_n(&mut self, n: usize) -> Result<RegisterSpan, Error> {

269 fn next_dynamic_n(this: &mut RegisterAlloc, n: usize) -> Option<RegisterSpan> {
270 let n = 116::try_from(n).ok()?;

271 let next_dynamic = this.next_dynamic.checked_add(n)?;

272 if next_dynamic >= this.min_preserve {

273 return None;

274

275 let register = RegisterSpan::new(Register::from_i16(this.next_dynamic));
276 this.next_dynamic += n;

277 this.max_dynamic = max(this.max_dynamic, this.next_dynamic);

278 Some(register)

279 1

280 self.assert_alloc_phase();

281 next_dynamic_n(self, n)

282) .ok_or_else(|| Error::from(TranslationError::AllocatedTooManyRegisters))
283

Uninhabitable register index

Even if max_dynamic = min_preserve is allowed, for r = max_dynamic = min_preserved ,
neither dynamic(r) nor preserve(r) .

This can lead to spurious TranslationError::AllocatedTooManyRegisters errors:

O wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 250 to 252 in 02621ad

250 if self.next_dynamic == self.min_preserve {
251 return Err(Error::from(TranslationError::AllocatedTooManyRegisters));
252

Moreover, register space() returns RegisterSpace::Dynamic for such a register:

Q wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 165 to 176 in 02621ad

165 pub fn register_space(&self, register: Register) -> RegisterSpace {
166 if register.is_const() {

167 return RegisterSpace::Const;
168 }

169 if self.is_local(register) {

170 return RegisterSpace::Local;
171

172 if self.is_preserved(register) {
173 return RegisterSpace::Preserve;
174

175 RegisterSpace: :Dynamic

176 1

25/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176

Recommendation

Adjust the definition of the bounds so that the whole register space can be utilized. Document
these invariants. Make sure checks for bounds are consistent.

Status

Acknowledged by client.

26/129

[C3] Underestimated Fuel Consumption of
Table and Memory Instructions

Severity: Low Recommended Action: Fix Code Not addressed by client

Description

FuelCosts::cost per uses a truncating u64 division to compute fuel amounts.

O wasmi-labs/wasmi/crates/wasmi/src/engine/config.rs
Line 132 to 135 in 02621ad

132 /// Returns the fuel consumption of the amount of items with costs per items.
133 fn costs_per(len_items: u64, items_per_fuel: NonZeroU64) -> u64 {

134 len_items / items_per_fuel

135

This may result in fuel for bytes and fuel for copies returning o (with the default cost
of 8 registers (copies) per fuel and 64 bytes per fuel).

fuel for _copies is used in several places. During the translation when generating copy and

Return instructions, a base fuel is added to account for the truncation

Q wasmi-labs/wasmi/crates/wasmi/src/engine/translator/instr_encoder.rs
Line 468 to 473 in 02621ad

468 // Note: The fuel for copies might result in 0 charges if there aren't
469 // enough copies to account for at least 1 fuel. Therefore we need
470 // to also bump by ‘FuelCosts::base' to charge at least 1 fuel.
471 self.bump_fuel_consumption(fuel_info, FuelCosts::base)?;

472 self.bump_fuel_consumption(fuel_info, |costs| {

473 costs.fuel for copies(rest.len() as u64 + 3)

but several other call sites do not make this adjustment: the code to finalize function translation
and for table-related operations don't adjust fuel.

fuel for bytes isonly usedin memory instructions. These instructions consume their fuel
dynamically, without adjustment to account for the truncation. See MemoryEntity::grow for an
example:

27/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L99-L130
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473

) wasmi-labs/wasmi/crates/wasmi/src/memory/mod.rs
Line 294 to 307 in 02621ad

294 if let Some(fuel) = fuel {
295 let additional_bytes = additional.to_bytes().unwrap_or(usize::MAX) as u64;
296 if fuel
297 .consume_fuel_1if(|costs| costs.fuel for_bytes(additional_bytes))
298 .is_err()
299 {
300 return notify_limiter(limiter,
EntityGrowError::T?prode(TrapCode::OutOfFuel));
301
302 1
303 4; At this point all checks passed to grow the linear memory:
304
305 // 1. The resource limiter validated the memory consumption.
306 // 2. The growth is within bounds.
307 // 3. There is enough fuel for the operation.
Recommendation

The most appropriate fix would be to modify the costs per function such that it will round up
instead of truncate the computed fuel value.

Status

Acknowledged by client

28/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307

[C4] Large inputs to raw pointer functions
may cause undefined behaviour depending
on target

Severity: High Recommended Action: Fix Code Not addressed by client

Description

There are 4 callsto *mut or *const functions that have a common Safety comment. These
calls are:

o engine/bytecode/instr_ptr.rs::InstructionPtr::offset calling <const* T>::offset with
count: isize ;

¢ engine/executor/stack.rs::FrameRegister::register_offset calling <mut* T>::offset with
count: isize ;

» engine/bytecode/instr_ptr.rs::InstructionPtr::add calling <const* T>::add with
count: usize

¢ engine/executor/stack/values.rs::BaseValueStackOffset::stack_ptr_at calling <mut* T>::add

with count: usize ;

These calls in particular are common in that they both take an unbounded argument on the type
that may violate the Safety comment of ():

/Il * The offset in bytes, count * size_of::<T>() , computed on mathematical integers
(without
/Il "wrapping around"), must fitin an isize .

let TYPE = InstructionPtr|UntypedVal

sizeof: :<TYPE> X count < isize::MAX
isize: :MAX J
sizeof: :<TYPE>

n—1__
2 - IJ

count < |

count < |

29/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L27-L40
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/const_ptr.rs#L349-L400
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L423-L427
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/mut_ptr.rs#L347-L400
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L42-L48
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/const_ptr.rs#L808-L863
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L118
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/mut_ptr.rs#L890-L945

2"*171J

count < | 3

Calculating the maximum for count for each word size gives:

Case n=38:

271
23

count < |
count < 15

Case n = 16:

count < Lzl;_lj

count < 4095

Case n = 32:

count < L23;—§1J

count < 268435455

Case n = 64:

63
count < |25

count < 1152921504606846975

Case n = 128:

count < L21227—3_1j

count < 21267647932558653966460912964485513215

n-bit count max count max as integer| u n ::MAX i n::MAX

n i<n>2:3:MAX on _ 1 on-1_ 1

8 18 15 255 127

16 ee X 4095 65535 32767

32 32 M08 268435455 4294967295 2147483647

64 1641 MR 1152921504606846975 18446744073709551615 9223372036854775807
128 128: :MAX 2126764793255865396646 | 3402823669209384634633 | 1701411834604692317316

23

0912964485513215

74607431768211455

87303715884105727

It is possible to overflow for all functions, as the input is unbounded isize for

InstructionPtr::offset and FrameRegister::register_offset , and the inputis

30/129

unbounded usize for InstructionPtr::add and ValueStack::stack_ptr_at . With
exception that FrameRegisters::register_offset is restricts offset toan i16 no matter the
architecture.

Recommendations
There should be a guard to ensure that the maximum value is not exceeded. If this is a
performance issue it should be on extra-checks option.

Status

Acknowledged by client. Furthermore, there is active development to add postconditions and
extra checks into Wasmi in this PR.

31/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://discord.com/channels/824582698147905556/1275463438931591319/1295775569450893354

[CI1] Best Practices and Notable
Particularities

Severity: Informative Addressed by client

Description

Here are some notes on the protocol particularities, comments, and suggestions to improve the
code or the design logic of the protocol in a best-practice sense. They do not in themselves
present issues to the audited protocol but are advised to either be aware of or to be followed
when possible, and may explain minor unexpected behaviors on the deployed project.

1.

Panic comment on for engine/bytecode/utils.rs::from_source to dst does not actually occur
in code.

. Magic numbers in engine/code_map.rs::UncompiledFuncEntity::compile.
. EngineFuncSpan relies on an invariant that start <= end , however it is possible to create

an instance of this struct that violates that.

. engine/executor/instrs.rs::get_entity! macro matches on a function with parameter

store: &StorelInner , however this parameter is unused.

. The way the FunctionBody gets deconstructed in parse_buffered_code , and then

reconstructed in FuncTranslationDriver::new appears inconsistent: While "eager”
translation uses an offset which is obtained from the original FunctionBody , the "lazy"
translation uses an offset of o . The offset appears redundant.

. The sync instance for Arena<Idx,T> requires T tobe send (should be sync). Given

the instances used with Arena , this is without consequence at the moment.

. Currently Wasmi is largely maintained by 1 person which presents a single point of failure.

Should there be a pressing issue or update required of Wasmi and that person is
unavailable, then it may be difficultly for other developers to address the issue.

. In engine/executor/instrs/return_.rs there are functions of the form execute return* which

execute instructions of the form Instructions::Return* . Many of the comments for these
functions incorrectly label which instruction is being executed. Here is one example.

Recommendations

32/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/utils.rs#L736-L758
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L578-L579
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L71-L144
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L864-L903
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L159-L170
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/driver.rs#L19-L31
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/engine/mod.rs#L616-L634
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/engine/mod.rs#L616-L634
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/module/parser.rs#L480-L496
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L609
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L609
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L42
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L272

For each of the topics elaborated above, we recommend implementing the following

approaches into the protocol's contracts:

1.

Remove the comment, the client confirmed that the function should not panic if it would
return BranchOffset(0)

. Change these numbers to constants, or add them to the config.
. Add a function to EngineFuncSpan::new(start: EngineFunc, end: EngineFunc) that

constructs an EngineFuncSpan but with a guard that enforces start <= end . All
constructions of EngineFuncSpan must happen through this function.

. Remove the unused parameter
. Investigate the de-facto value of the offset and remove it if redundant, possibly use

original FunctionBody for translation.

.Change T: send to T: Sync
. Increase the knowledge base of Wasmi to more people. A good start could be adding code

review for PRs to Stellar / Soroban, so that they are now becoming increasingly familiar
with the code as it evolves.

8. Correct the comments to the mislabeled instructions.
Status
1. Removed on main branch (v.0.37.0 and above)

N O 0o~ W0DN

. Fixed on main branch PR#1239

. Fixed on main branch PR#1239

. Changed on main branch (v0.37.2 and above)

. Fixed on main branch. PR#1241

. Fixed on main branch PR#1239

. Acknowledged. Furthermore, there are active efforts to increase the knowledge base of

Wasmi to more people, and code review for Stellar / Soroban on PRs is considered.

. Fixed on main branch PR#1239

33/129

https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/commit/55b18f1d2745e1c73d13defff41a8edc5590d345
https://github.com/wasmi-labs/wasmi/pull/1141/files
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/pull/1239

[CI2] Results of cargo-audit
Addressed by client

Description

Rustsec tool cargo-audit was run and returned two warnings (RUSTSEC-2024-0375,
RUSTSEC-2021-0145) related to one crate atty which is unmaintaned. Recommended fix is to
use std::io::IsTerminal for Rust version 71.70.0 . However this crate is a downstream
dependency of wasi-cap-std-sync.

Recommendations
Change dependencies in such a way that avoids using the atty crate.

Status

This issue was already addressed by https://github.com/wasmi-labs/wasmi/pull/1140 for main
and vo.37.0+ . No fix is implemented for ©.36.x , however since thisis a wasi dependency it
should not affect Stellar / Soroban.

34/129

https://github.com/rustsec/rustsec
https://rustsec.org/advisories/RUSTSEC-2024-0375
https://rustsec.org/advisories/RUSTSEC-2021-0145
https://crates.io/crates/atty
https://doc.rust-lang.org/stable/std/io/trait.IsTerminal.html
https://crates.io/crates/wasi-cap-std-sync
https://github.com/wasmi-labs/wasmi/pull/1140

[CI3] visit_input_registers does not visit
all registers of a RegisterSpan

Severity: Informative Recommended Action: Document Prominently Not addressed by client

Description

The visit input registers ftrait provides a way to visit, and potentially modify, the input
register references contained in instructions. However, the implementation is incomplete
because in case of a RegisterSpan , only the first register of the span is visited and modified.

It is not possible in general to implement a complete solution for Registerspan because the
length of a Registerspan (i.e., how many and which registers are in fact addressed by it) is not
known from the data type alone, but determined by the context in which the RrRegisterspan is
used.

For the use case of defragmenting the preservation space, the visit_input_registers
implementation is sufficient because the entire register span will be moved when moving its first
register.

The second call site of visit_input_registers , within encode_local_set , tries to determine
whether a given register was used by an instruction. This will not detect usage when the given
register is addressed as part of a RegistersSpan .

Recommendation

For future development on Wasmi, it should be documented that visit input registers is
incomplete to avoid introducing bugs because of an assumption of completeness.

Status

Reported to the client, implications discussed. Because the given register is in the preservation
space, it is believed that no cases exist where it could be part of a register span and therefore
no fix is required.

35/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit_register.rs#L31
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit_register.rs#L685-L689
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L819-L833

[Cl4] Missing copy In select translation
Recommended Action: Fix Code

Description

The translation step for select relies on constant propagation to achieve an efficient encoding
for the instruction.

For example, if the condition is a constant, then the selected value can just be pushed back
onto the value stack. However, if the value is a dynamic or preservation register, in order to
avoid overwriting the value later, a copy instruction is emitted (see Output mismatch between
Wasmi and Wasmtime #2):

O wasmi-labs/wasmi/crates/wasmi/src/engine/translator/mod.rs
Line 2209 to 2220 in 8alc6d8

2209 // Case: constant propagating a dynamic or preserved register
might overwrite it in

2210 // future instruction translation steps and thus we may
require a copy instruction

211 // to prevent this from happening.

2212 let result = self.alloc.stack.push_dynamic()?;

2213 let fuel_info = self.fuel_info();

2214 self.alloc.instr_encoder.encode_copy(

2215 &mut self.alloc.stack,

2216 result,

2217 selected,

2218 fuel_info,

2219)?;

2220 return Ok(());

If the two values represent the same register, a similar optimization applies. In this case
however, dynamic and preservation registers are not special cased, and no copy instruction is
emitted:

() wasmi-labs/wasmi/crates/wasmi/src/engine/translator/mod.rs
Line 2229 to 2235 in 8alc6d8

2229 if lhs == rhs {

2230 // # Optimization

2231

2232 // Both ‘1lhs® and ‘rhs’ are equal registers
2233 // and thus will always yield the same value.
2234 self.alloc.stack.push_register(lhs)?;

2235 return Ok(());

36/129

https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235

Recommendation

It is not evident that this is a safe optimization. If it is, consider documenting it with comments. If
it is not, the copy instruction should be emitted. Adding an assertion to enforce the desired
behaviour is also recommended.

Status

Acknowledged by client.

37/129

Suggested Executor Assertions

The execution of some of the Wasmi instructions relies on assumptions on the translator's
instruction output.

In some of these cases, assertions could be inserted into the executor code to double-check
that the instructions adhere to the expected invariants (if desired, such assertions can be
implemented with debug assert to avoid performance penalties in release builds).

Copying between registers, assuming no overlap

The copySpanNonOverlapping and CopyManyNonOverlapping are intended to be used when it
can be guaranteed that while copying the values, no register is read from that has already been
written to before (assuming a forward traversal of the registers).

Assuming no such overlap between the source and target register sets, values are copied
directly without a temporary buffer.

e For CcopySpanNonOverlapping , the function has_overlapping_copies(_, _) can be used
to ensure at runtime that this is respected by the generated code.

e For copyManyNonOverlapping , each of the source registers would have to be checked
individually, by keeping a record of registers that have already been written to (in the
respective code, the span starting at results.head() up tothe current result . Asimilar
check is implemented in the translator).

These can also be implemented as static checks (see Translation Output Validation) because
the registers involved in the copy instructions are known after translation.

BranchTable instruction assumes a valid sequence of
Branch or Return instructions follows

The implementation of BranchTable increments the instruction pointer by the index value,
assuming that it will pointto a Branch or Return instruction afterwards. This could be
checked by confirming the type of the instruction that ip points to after the adjustment. It can
also be a static check (see Translation Output Validation) because the maximal length is known
statically.

38/129

https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/runtimeverification/_audits_wasmi-labs_wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/branch.rs#L46-L57

Check InstructionPtr (and FrameRegister) range to
(dynamically) protect against overflow

The offset and add methods to adjust the InstructionPtr require the caller to ensure that
the resulting instruction pointer always remains within the bounds of the current function. This
could be checked within those methods by storing the valid range (in the Instructionptr itself
or in function call frames). This will however have a performance penalty because of the high
frequency of instruction pointer changes. Therefore a check of the translated code before
execution, as described in Translation Output Validation, is preferable, especially because all
call sites of InstructionPtr::add and InstructionPtr::offset have statically-known or
bounded arguments.

Similarly, FrameRegister could store the range to ensure that register_offset function does
not overflow or underflow.

Status

These assertions are acknowledged. However their inclusion may occur in one of two different
configurations, extra-check ,or translation post-conditions . These configurations aim to
create a modular approach to including higher security guarantees. extra-checks will be
optional on production code to include stronger guarantees that only incur an insignificant or
minor overhead. translation post-conditions are exclusively for debug compilation as the
checks will incur a high performance cost. PR#1233 has active development for

translation post-conditions .

39/129

https://github.com/wasmi-labs/wasmi/pull/1233

Translation Output Validation

Many instruction implementations in Wasmi rely on assumed properties of the instruction
sequence produced by the Wasm-to-Wasmi translator, which in turn relies on the Wasm
bytecode being validated.

In order to ensure that the Wasmi bytecode does not crash during execution, some properties of
the Wasmi bytecode could be double-checked. These properties can be either local to compiled
(translated) functions, or refer to global properties that concern an entire module (including all
its imports).

Instruction Sequence Validations

As soon as a Wasm function is compiled to Wasmi, its CompiledFuncEntity can be validated.

O wasmi-labs/wasmi/crates/wasmi/src/engine/code_map.rs
Line 710 to 722 in 02621ad
710 pub struct CompiledFuncEntity {

711 /// The sequence of [Instruction’] of the [CompiledFuncEntity'].

712 instrs: Pin<Box<[Instruction]>>,

713 /// The constant values local to the [EngineFunc'].

714 consts: Pin<Box<[UntypedVal]>>,

715 /// The number of registers used by the [EngineFunc'] in total.

716

717 /// # Note

718 /1]

719 /// This includes registers to store the function local constant values,
720 /// function parameters, function locals and dynamically used registers.
721 len_registers: ule6,

722}

The sequence of instrs must have the following properties:

1. Some instructions require certain "instruction parameters" (encoded in the same
Instruction type) to follow immediately. In turn, these instruction parameters (e.g.,
Const32, TableIdx , Register) never occur by themselves without preceeding context.
Details are described in wasmi: :bytecode: :Instruction and in Appendix: Wasmi
Instruction Set Overview .

¢ This can be checked easily by a forward pass through the instruction sequence.

40/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722

2. All instructions in the sequence should refer only to registers in the range allocated by
alloc call frame , oflength len registers . However, registers are accessed using an
offset of consts.len() from the (value) frame offset, i.e., accesses to constants inside a
function use a negative register index (see Vvaluestack , Stackoffsets and the
sp: FrameRegisters field in Engine).

« Aforward pass through the instruction sequence can verify this for all instructions and
instruction parameters that carry Register arguments.

e However, instructions with Registerspan arguments will sometimes require
consideration of the instruction context (e.g., CopyMany), as the length of the
Registerspan is not part of this data structure.

« For these instructions, the maximum register that is accessed typically depends on
how many RegisterlList , Register , Register2 ,0Or Register3 instructions follow.
This requires reading ahead in the instruction sequence.

3. All branch targets must stay within the function's instruction sequence.
The Wasm instruction set uses the concept of structured control instructions and implicit
labels to specify branch targets for branch instructions. Wasmi translation resolves these
labels to integer offsets from the current instruction pointer. The Wasm 1f instruction is
also compiled to a (fused) Wasmi branch instruction. The generated offset s in branch

instructions are not allowed to move the instruction pointer outside the range of the current
function's instructions.

+ This can be implemented by a forward pass through the instructions considering the
relative position of the instruction in the instrs array.
e For each offset found in an instruction, offset + position must be between
[0..instrs.len()] .

e Branch tables in Wasmi are built from sequences of branch instructions which do not
require special treatment. The BranchTable instruction itself performs a forward jump
of dynamic but bounded size and can be checked using the size bound.

Checking References to Wasm Store Objects Contained in
Instructions

Besides these local properties, the instruction sequence contains references to objects from the
Wasm store: tables, memories, data segments, globals, and other functions. In order to ensure

41/129

that no instruction crashes, it must be ensured that this store indeed contains the referenced
entity for all relevant instructions:

Table indexes within callIndirectParams , TableSize , and of course TableIdx , must
refer to existing tables;

Data segment indexes within DatasegmentIdx and DataDrop , must refer to existing
data segments;

Element segment indexes within ElementSegmentIdx and ElemDrop , must refer to
existing data segments;

Function indexes within rRefFunc , must refer to existing (compiled or uncompiled)
functions.

These properties can be checked using the function's respective ModuleHeader .

C) wasmi-labs/wasmi/crates/wasmi/src/module/mod.rs
Line 68 to 86 in 02621ad

68 pub struct ModuleHeader {

69 inner: Arc<ModuleHeaderInner>,
70}

71

72 #[derive(Debug)]

73 struct ModuleHeaderInner {

74 engine: EnginelWeak,

75 func_types: Arc<[DedupFuncType]>,
76 imports: ModuleImports,

77 funcs: Box<[DedupFuncType]>,

78 tables: Box<[TableType]>,

79 memories: Box<|MemoryType]l>,

80 globals: Box<[GlobalType]>,

81 globals_1init: Box<[ConstExpr]>,

82 exports: Map<Box<str>, ExternIdx>,
83 start: Option<FuncIdx>,

84 engine_funcs: EngineFuncSpan,

85) element_segments: Box<[ElementSegment]>,
86

All indexed entities are already present in the module header, although they are populated
during module instantiation. The Wasm validation already checks all entity indexes before
translation to Wasmi, so checking the existence of respective entities in Wasmi data structures
duplicates these checks.

Checking that function calls have the correct arity (arg.
count)

42/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86

call* instructions (and Returncall* variants for tail call optimization) provide function
arguments in subsequent Register* instructions.

For each function call, it should be checked that the function is called with the correct amount of
arguments. The amount of arguments (arity) cannot easily be determined from the
CompiledFuncEntity . Besides the argument count, the len registers includes both a
(known) amount of constants (consts) and an amount of registers for internal use.
The actual arity is bounded by 1len_registers - consts.len() . Checking that no more than

len_registers - consts.len() arguments are provided ensures that the call to

copy call params (call.rs: 241) cannot overflow the allocated value stack frame.

More precise arity information could be obtained from the ModuleHeader , which contains the
types of all functions in the module.

Status

Planned, Add debug post-conditions for Wasmi translation created.

43/129

https://github.com/wasmi-labs/wasmi/issues/1209

Fuzzing Discussion and Findings

This section communicates specific results and findings for the fuzzing runs performed over the
duration of the audit. The fuzzing was performed in accordance with description given in section
Methodology - see there for a more in-depth explanation motivating our approach and goals for
the fuzzing campaign. The end of this section contains detailed information about all identified
issues.

Time and Compute Resources

Because fuzzing is a randomized, feedback-driven process which gives better results the more
iterations are run, with modern fuzzing tools also able to scale near linearly with the number of
available cores, additional compute power and time significantly increases the likelihood that a
vulnerability is identified. Towards that end, we allocated two powerful 16-core / 32-thread
machines for the fuzzing campaign:

e An AMD Ryzen Threadripper 1950X with 64GB of RAM
e An AMD Ryzen 9 7950X with 128 GB RAM

After an initial 1.5 week period spent familiarizing with the codebase, we ran fuzzers on these
machines near continuously for the remaining audit duration, yielding approximately 13
machine-weeks of total fuzzing time. The actual total duration is likely higher, as we also
performed numerous short exploratory runs on other machines while these longer-running
fuzzers were still executing.

As described in Methodology, our approach focused on end-to-end testing of the entire
interpretation pipeline for crash-freedom and conformance with other Wasm implementations,
homing in on thoroughly testing a small number of targets rather than distributing compute
resources too thinly. The table below provides the approximate machine-time spent on each
target, with descriptions of each target provided in the following sections.

Target

Machine-Days

Version

Bugs

Translation

14

v0.36.0

1

Execution

26

v0.36.x

Execution

8

v0.37.x

Differential

30

v0.36.x

Performance

13

v0.36.x

2
2
3
0

44/129

Harnesses

For the standard, coverage-guided fuzzing which seeks to find interesting inputs by exploring as
many control-flow edges as possible, we built off of Wasmi's existing harnesses.

As an initial test case to evaluate our machine configuration and choice of fuzzing toolings, we
ran the Wasmi translator harness unmodified on both machines for approximately 1 week. This
translator harness simply generates random Wasm modules and calls the translator on them,
with no specific testing assertions other than the invariant that no crashes occur. While this did
reveal one bug, we decided not to dedicate further time to this harness after this period because
the other harnesses already adequately cover these same code paths, while also hitting the
more unsafe -dense parts of codebase with the executor where vulnerabilities are likely to
occur.

We then focused primarily on the two other harnesses, both of which generate a random Wasm
module using wasm-smith then call each exported function:

¢ An executor harness, which makes no explicit test assertions, but which we compile with
sanitizer instrumentation and debug assertions enabled to identify crashes, failed
assertions, and memory safety violations.

« Adifferential fuzzing harness, which checks results against wasmtime as well as a prior
stack-based version of Wasmi.

We iteratively refined these harnesses as described in Methodology, identifying the best
configurations for both the harness and the fuzzing tool to achieve maximal coverage. This
process is guided by intuition stemming from knowledge of the fuzzer internals, along with
empirical testing using numerous shorter fuzzing runs to evaluate possible changes, noting
factors such as the rate of coverage increase, the breadth of coverage (i.e. line and function-
based coverage), the depth of coverage (i.e. branch and path-based coverage), and the time for
each test iteration. Because of the exploratory nature and abundant number of shortly-tested
variations, in lieu of specific quantitative data, we provide a qualitative account highlighting the
most effective modifications found. These modifications have since been upstreamed into
Wasmi.

The wasm-smith configuration controls which Wasm features are available when generating
inputs from a given &[us] seed, with parameters to set the minimum or maximum numbers of
various syntactic elements. In the existing harnesses, reasonable defaults were set for this

45/129

configuration with all supported features enabled. One of the most effective changes we made
was to instead switch to a swarm-testing approach, where the wasm-smith configuration is itself
dynamically produced from the input seed rather than fixed across all inputs. With a fixed
configuration, where all possible features are enabled, the numerous features compete against
each other for limited space within a single generated input, leading to each individual feature
only being exercised shallowly. With swarm testing, however, only a smaller subset of features
is enabled at any given time. This allows each of those features to be more thoroughly
represented within a single generated input, while the random selection of the enabled subset
still ensures a breadth of feature coverage across multiple inputs.

In the original executor harness, each randomly generated function is always called with a value
of 1 for every argument, with the client's hope being that mutation of the function body itself
would provide sufficient coverage despite these statically fixed inputs. In practice though, we
found that randomizing the inputs improved the overall coverage, both in terms of it's depth and
the number of iterations required to discover deeper control-flow paths. Crucially, the arguments
are generated using bytes from areas of the seed unconsumed by wasm-smith's generation
process.

At a high level, the improvements here make sense because randomizing the arguments
provides more opportunities for small mutations in the seed to produce correspondingly small
changes in the interpreter control-flow, improving the fuzzer's ability to iteratively work towards
producing edge-case inputs needed to hit deeper control flow paths. More explicitly, control-flow
paths are often guarded by comparisons requiring a particular edge-case value - checksums,
maximums, minimums, zeros, NaNs, etc. Honggfuzz attempts to find such values by recording
the Hamming distance between arguments of each cmp assembly instruction, preferentially
exploring inputs which shorten this distance for any particular cmp and thus are more likely to
change the comparison result and any dependent control-flow. Although wasm-smith makes an
effort to ensure small changes in the input seed produce small changes in the generated Wasm
module, there are many cases where this fails in practice - altering a single decision point in the
generation logic, e.g. the type of an argument, can radically alter the generated module.
Speculatively, this makes honggfuzz's cmp feedback mechanism less effective, as the entire
path leading to a particular cmp changes with each mutation if it is even reached at all, rather
than allowing some mutations which keeping that path relatively fixed and only alter the data
under comparison. By also randomizing the function arguments with the remaining un-
consumed parts of the seed, some mutations end up fixing the generated function body and

46/129

https://dl.acm.org/doi/abs/10.1145/2338965.2336763

only altering the generated argument value, still preserving the bulk of the interpreter control-
flow while moving closer to the desired cmp result, making it easier to achieve greater
coverage depth.

The original executor harness also relied on wasm-smith's ensure termination functionality to
prevent the generation of infinite loops, which we replaced with Wasmi's built-in fuel metering.
This of course improved coverage for the fuel metering code, as well as iteration time due to a
more efficient implementation, but interestingly, it also seemed to decrease the number of
iterations needed to achieve a given level of coverage breadth. Speculatively, this is because
ensure_termination only inserts fuel metering at function headers and loop bodies, so for a
fixed fuel cost, more iterations are spent exploring seeds near a local-maxima wherein
generating additional instructions in the un-metered, straight line sections of code marginally
increases coverage or total instruction count (which is also considered as part of honggfuzz's
metric) without actually building towards more interesting edge-cases. With Wasmi's built-in fuel
metering, which instead applies a cost for each instruction, extending the straight line sections
of code comes at the cost of reducing complexity elsewhere, making it less likely that fuzzers
considered these inputs interesting

For the differential fuzzing harness, the original harness had nondeterministic failures where
one of compared Wasm interpreters ran out of stack space or register allocations due to
differing resource limits as permitted by the Wasm spec. This render the results uninteresting,
as it's difficult to differentiate actual issues versus this sort of false positive. For our fuzzing
campaign, we then modified the differential target to pass on these nondeterministic cases
instead of panicking, isolating any panics to the cases where all of the executors finish
successfully but have different outputs. We also modified the wasm-smith configuration for this
target to generate Wasm modules that look like the kind of modules that will be accepted by the
Soroban client, e.g. disabling multi-value support, floating points, threads, etc.

We additionally attempted to develop a performance-focused fuzzer, seeking to maximize
execution-time-per-unit-fuel and identify possible DoS vectors. This included both a fairly simple
modification to honggfuzz, swapping the order of consideration for instruction count versus
coverage updates when selecting previously-run inputs as a base for new inputs, as well as a
more involved custom fork of honggfuzz to develop an approach based on PerfFuzz. The latter
PerfFuzz-inspired fuzzer is still under development, and unfortunately some bugs in the fuzzer
implementation were not identified until after the runs performed for this audit, which likely
invalidates the efficacy of those attempts. No new vulnerabilities were revealed by either of

47/129

https://dl.acm.org/doi/10.1145/3213846.3213874

these performance-based fuzzing efforts, although it must be emphasized that the experimental
nature of this approach means that a lack of findings doesn't provide any guarantees regarding
the absence of relevant issues.

Identified Issues

In the rest of this section, we present all the issues identified by our fuzzing runs. In total, we
found 8 violations of expected behavior:

3 silently incorrect outputs

2 segfaults or memory corruption issues

1 hang

1 panic due to hitting code marked unreachable
1 failed debug assertion

For each issue, we report the versions of Wasmi that are affected, a brief description of the
actual vs expected behavior, a test case which triggers the bug, as well as links to any fixes
made by the client and the relevant releases. At the time of writing, all issues identified have
been patched in the most recent vo.36.x and v0.37.x release.

As with other findings in this report, we include a severity level ranging from low to high. One
subtlety worth highlighting is that a few of the identified issues require the reference-types or
multi-value Wasm proposals, which are disabled by present-day Soroban. For these issues,
if they are isolated and seem to fundamentally require the unsupported proposals, we assign
low severity regardless of other considerations. However, if they instead seem to be indicative
of a more general design risk, with a likelihood of there being yet-undiscovered analogous
vulnerabilities which do not require the unsupported proposals, we assign a severity as if the
issue applied to the Wasm MVP.

Note, however, that such issues marked low severity due to requiring reference-types or
multi-value were still important to address. Soroban may decide to extend their supported
Wasm features in the future as these proposals become more established, especially given that
they were recently enabled by default for the Rust compiler's code generation.

48/129

https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html

[F1] Abort on realloc() due to faulty
br_table optimization

Addressed by client
Context

Version 0.36: v0.36.0 #, v0.36.1], v0.36.2 [/, v0.36.3 (1], v0.36.4 [, v0.36.5 [}
Version 0.37: v0.37.0 [, v0.37.1 [, v0.37.2]

A Wasm program causes Wasmi to abort duringa realloc() .

Program

realloc.wasm :

(module

(func_(;0;)
call 1
drop
drop
drop
drop
drop
drop
drop
drop
drop
call o)

(func (;1;) (result 164 164 164 164 164 164 164 164 164)
(local 132)
i164.const
164.const
164.const
164.const
164.const
164.const
164.const
i164.const
164.const
local.get
br_table 0 0)

(export "" (func 0)))

[ofoNoJoNoNoJoNoJoR o]

Behavior

$ wasmi_cli realloc.wasm
realloc(): invalid next size
Aborted

49/129

Status

Fixed for 0.36 versions with a646d27 included in release v0.36.1. Does not occur in 0.37
versions due to changes inthe br table encoding which inadvertently addressed the issue.

Severity

This issue is marked as high severity because:

e |tis a critical memory error where the heap has been corrupted resulting in an out-of-

bounds write.

 Although this particular issue is only reproducible with the multi-value proposal, which is
disabled by present-day Soroban, it is indicative of a more generally risky design that is
unrelated to multi-value .

Explicitly, one of the contributing factors for this issue is that rRegSpan does not record its own

length, requiring it to be maintained correctly elsewhere lest a memory error occurs. It's hard to
guarantee no other similar vulnerabilities are present, and another issue related to this design

was already discovered in visit_input_registers does not visit all registers of a

RegisterSpan .

50/129

https://github.com/wasmi-labs/wasmi/commit/a646d27a4d69e73dffb30bf706bfb394dfa6a27f

[F2] Translator debug assertion fired due to
ref.is_null constant propagation

Severity: Low Addressed by client

Context

Version 0.36: v0.36.0 i#, v0.36.1 [, v0.36.2 1], v0.36.3 [/, v0.36.4 [, v0.36.5 [}
Version 0.37: v0.37.0 [, v0.37.1 1], v0.37.2 [
Unreleased: h48635f #

A Wasm program causes the type-checking debug assertion in Typedval::i64 eq to fire.

Program

assert.wat :
(module
(func (result i32)

ref.null func
ref.is_null

)
)

Behavior

$ wasmi_cli --invoke '' --compilation-mode lazy assert.wat
thread 'main' panicked at wasmi-0.36.0/src/engine/translator/typed_value.rs:180:5:
assertion failed: matches!(self.ty(), < 164 as Typed > :: TY)

Status

Fixed for 0.36 versions with f09d121 included in release v0.36.1. Fixed for 0.37 versions with
78788f9 prior to the release of v0.37.0.

Severity

This issue is marked as low severity because:

« It only occurs with debug assertions enabled.
 Although the fired assertion does indicate an overlooked case in the design, the actual
runtime behavior would still be correct if the assertion were simply removed.

51/129

https://github.com/wasmi-labs/wasmi/commit/b48685f2b1c3edf118279af6cdf7603804e4a99c
https://github.com/wasmi-labs/wasmi/blob/b48685f2b1c3edf118279af6cdf7603804e4a99c/crates/core/src/typed.rs#L163
https://github.com/wasmi-labs/wasmi/commit/f09d1210732820e871064e88626a07a65cb0a6ee
https://github.com/wasmi-labs/wasmi/commit/78788f9717c12d8fbb1f0dc2ef560714e6c01d0e

Namely, the root cause is that ref.is null delegates to the translation logic for i64.eqz ,
taking advantage of the fact that Wasmi serializes null as a 64-bit © . However, during
constant propagation, this calls Typedval::i64_eq which contains a strict type checking
assertion requiring both sides to be a valType::164 before comparing them as Untyped . The
assertion fails because a Funcref is not literally a valType::164 , even though the actual
comparison as Untyped would still be semantically correct.

52/129

[F3] Segmentation fault due to
visit_input_regs bug
Severity: Low Addressed by client

Context

Version 0.36: v0.36.0 #, v0.36.1 #, v0.36.2 #, v0.36.3 #, v0.36.4 %, v0.36.5 [}
Version 0.37: v0.37.0 [, v0.37.1 [, v0.37.2]

A Wasm program causes a segmentation fault during execution of table.get o .

Program

segv.wat :
(module
(type (;0;) (func))
(func (;0;) (type 0)
(local 132)
local.get ©
i32.const 0O
local.set 0
table.get 0
drop

)
(table (;0;) 1 2 funcref)
(export "" (func 0))

Behavior

$ wasmi_cli segv.wat
zsh: segmentation fault (core dumped) wasmi_cli bad.wat

Status

The root cause is that visit_input_regs fails to visit the input register for
Instruction:TableGet::index , SO the preserved register input to
Instruction::TableGet (index) is not defraged at the end of translation.

Fixed for 0.36 versions with 82c9388 included in release v0.36.5. Does not occur in 0.37
versions due to a refactoring which allows these visitors to be generated automatically, exactly

to avoid this sort of bug.

53/129

https://github.com/wasmi-labs/wasmi/commit/82c9388f1d54e4e74e1b581f11978b4028eeaba2

Severity

This issue is marked as low severity because:

e It only occurs with the reference-types proposal, which is disabled by present-day

Soroban.
¢ Although the issue is a critical memory error, it is an isolated typo with no indication of

broader risk to the MVP or present-day Soroban.

54/129

[F4] Output mismatch between Wasmi and
Wasmtime #1

Severity: Low Addressed by client

Context

Version 0.36: v0.36.0 i#, v0.36.1 [, v0.36.2 [/, v0.36.3 [/, v0.36.4 [/, v0.36.5 [/}
Version 0.37: v0.37.0 [, v0.37.1 [, v0.37.2]
Unreleased: 1e5a4ba #

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program

diff.wat :

(module
(func (export "") (param 132) (result 132 132 132 132)
local.get 0
local.get 0
block (param 132 132)
local.tee 0
block (param 132 132)
local.get 0
local.get 0
br 2 ;; returns
end
end
unreachable

)
)
Behavior

Wasmi and Wasmtime report different outputs.

$ wasmi_cli diff.wat 1
[e, 1, 1, 1]
$ wasmtime diff.wat 1

RPRRR

Status

55/129

https://github.com/wasmi-labs/wasmi/commit/1e5a4baa351ef5dd404721910a007a5e07ab7fca

Fixed for 0.36 versions with 4152919 included in release v0.36.1. Fixed for 0.37 versions with
e9cbact prior to the release of v0.37.0.

Severity

This issue is marked as low severity because:

« |t only occurs with the multi-value proposal, which is disabled by present-day Soroban.
e Itis an isolated issue with no indication of broader risk for to the MVP or present-day

Soroban.

56/129

https://github.com/wasmi-labs/wasmi/commit/415a919678e54efd2dcf187a7fda1c2df5a1e112
https://github.com/wasmi-labs/wasmi/commit/e9c6acf3cb8f2babc8136615ed157eee310a26a9

[F5] Output mismatch between Wasmi and
Wasmtime #2

Severity: High Addressed by client
Context

Version 0.36: v0.36.0 i#, v0.36.1 %, v0.36.2 #, v0.36.3 [/], v0.36.4 [/, v0.36.5 [/}
Version 0.37: v0.37.0 #, v0.37.1 [, v0.37.2]

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program
diff.wat :
(module
(func (export "test") (param 132) (result 132)
(132.popcnt (local.get 0)) ;; case: true (132.const 0)

(132.clz (i32.eqz (local.get 0))) ;; case: false (i32.const 31)
§132.const 0) ;3 condition 5132.c0nst 03
select) ;; case: true (132.const 31
(132.const 0) ;3 case: false (132.const 0)
gi32.eqz (local.get 0)) ;3 condition (i32.const 1)

select)

)
)
Behavior

$ wasmtime diff.wat

warning: using "--invoke® with a function that returns values is experimental and may break
in the future

31

$ wasmi_cli diff.wat

1

Status

Fixed for 0.36 versions with 15a3802 included in release v0.36.3. Fixed for 0.37 versions with
8ed9469 included in release v0.37.1.

Severity

57/129

https://github.com/wasmi-labs/wasmi/commit/15a38024175b4a17792c7fe30f0b07b8abf10608
https://github.com/wasmi-labs/wasmi/commit/8ed9469f262baffb6050f8d3890850f466c1cfb2

This issue is marked as high severity because it affects the Wasm MVP as supported by
Soroban and can silently result in arbitrarily incorrect results.

58/129

[F6] Output mismatch between Wasmi and
Wasmtime #3

Severity: High Addressed by client
Context

Version 0.36: v0.36.0 i#, v0.36.1 %, v0.36.2 #, v0.36.3 [/], v0.36.4 [/, v0.36.5 [/}
Version 0.37: v0.37.0 #, v0.37.1 #, v0.37.2 [}

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program

diff.wat :

(module
(func (export "") (param 132) (result i32)

(local.set 0 (i132.const 0))

(local.get 0)

(loop $continue

(if (132.eqz (local.get 0))
(then

Elocal.set 0 (i32.const 1))
br $continue)

)
)

)
)

Behavior

$ wasmtime diff.wat 1
(0]
$ wasmi_cli diff.wat 1
1

Status

Fixed for 0.36 versions with 5859e15 included in release v0.36.4. Fixed for 0.37 versions with
ddc8e5e included in release v0.37.2.

Severity

59/129

https://github.com/wasmi-labs/wasmi/commit/5859e15a09078a8d15cbac7ccb7da85375306e5f
https://github.com/wasmi-labs/wasmi/commit/ddc8e5e564fd69d85bd45ec543208b52e655f43e

This issue is marked as high severity because it affects the Wasm MVP as supported by
Soroban and can silently result in arbitrarily incorrect results.

60/129

[F7] Executor hang on unreleased version
due to copy_span bug

Severity: Low Addressed by client

Context

Version 0.36: v0.36.0 /1, v0.36.1 [, v0.36.2 1], v0.36.3 [, v0.36.4 [], v0.36.5 [}
Version 0.37: v0.37.0 [, v0.37.1 7], v0.37.2 [}
Unreleased: 1724242 #%

A Wasm program causes the executor to incorrectly hang, independently of fuel metering.

Program

hang.wat :

(module ;; hangs on main branch
(func (export "") (result 132 132 i32)

(local 132 i32 1i32)

i32.const 0

(block (result 132 132 i32) ;; label = @1
local.get ©
local.get 1
local.get 2
(block

;7 The next two instructions together cause an integer-overflow trap.

f64.const 0x1.b1ddf4040cd22p+901
i32.trunc_f64_u
drop

drop
)
)

Behavior

Wasmi v0.36.0 correctly reports an integer overflow
$ wasmi_cli --invoke '' --compilation-mode lazy --fuel 10000 hang.wat
Error: failed during execution of : integer overflow

but the same invocation hangs when tested on commit 17a4242.

Status

61/129

https://github.com/wasmi-labs/wasmi/commit/17a4242ff1c6988a6a015801d2f58ce72db5c27b
https://github.com/wasmi-labs/wasmi/commit/17a4242ff1c6988a6a015801d2f58ce72db5c27b

Does not occur in 0.36 versions. Fixed for 0.37 versions with 1e5a4ba prior to the release of
v0.37.0.

Note that this bug only occurred mid-development and was never published in a released
version of Wasmi.

Severity

This issue is marked as low severity because:

« It only occurs with the multi-value proposal, which is disabled by present-day Soroban.
¢ |tis an isolated issue with no indication of broader risk for to the MVP or present-day
Soroban.

62/129

https://github.com/wasmi-labs/wasmi/commit/1e5a4baa351ef5dd404721910a007a5e07ab7fca

[F8] Executor panic on unreleased version
due to br_table_many bug

Severity: Low Addressed by client

Context

Version 0.36: v0.36.0 [, v0.36.1 (], v0.36.2 [, v0.36.3 [, v0.36.4 [/
Version 0.37: v0.37.0 [, v0.37.1 [, v0.37.2]
Unreleased: a101c50 #

A Wasm program causes the executor to panic.

Program

crash.wat :

(module
(func (result i32 132 132 1i32)
i32.const 1
i32.const 0
i32.const 1
i32.const 0

(func (export "") (result 132 i32 i32 1i32)
(block (result 132 132 i32 i32) ;; label = @1
i32.const 0
call o
br_table 0 1 1
)
)
)

Behavior

Wasmi v0.36.0 correctly runs the example

$ wasmi_cli --invoke '' --compilation-mode lazy crash.wat
[6, 1, 6, 1, O]

but the same invocation panics with commit a101c50

$ wasmi_cli --invoke '' --compilation-mode lazy crash.wat

thread 'main' panicked at crates/wasmi/src/engine/executor/instrs/return_.rs:252:27:
internal error: entered unreachable code: unexpected “Instruction” found while executing
"Instruction::ReturnMany : BranchTableTarget { results: RegSpan(Reg(6)), offset:
BranchOffset(3) }

63/129

https://github.com/wasmi-labs/wasmi/commit/a101c5057ccd47520ba50b196653e7ca192dacf9
https://github.com/wasmi-labs/wasmi/commit/a101c5057ccd47520ba50b196653e7ca192dacf9

Status

Does not occur in 0.36 versions. Fixed for 0.37 versions with cc02394 prior to the release of
v0.37.0.

Note that this bug only occurred mid-development and was never published in a released
version of Wasmi.

Severity

This issue is marked as low severity because:

e It only occurs with the multi-value proposal, which is disabled by present-day Soroban.
e Itis an isolated issue with no indication of broader risk for to the MVP or present-day
Soroban.

64/129

https://github.com/wasmi-labs/wasmi/commit/cc023941ce92f4b8b3a27ce4afd9e465283bd4db

Appendix

This appendix contains additional technical documentation produced during the audit, as well as
an overview of all unsafe Rust code inspected as part of the code review.

65/129

Appendix: Wasmi Instruction Set Overview

Wasmi Instruction Set Description

Source: Wasmi source code wasmi::engine::bytecode: :Instruction (v0.36.0)

The instructions of Wasmi byte code are declared and described in the bytecode module. This
is a reorganised overview of all instructions, categorised in a manner similar to how Wasm
instructions are presented in the Wasm specification.

e Special purpose instructions - not present in Wasm
¢ Numeric instructions

» Vector instructions: None

¢ Reference instructions

e Parametric instructions

¢ Variable instructions

e Table instructions

e Memory instructions

¢ Control instructions

Generally speaking, the Wasmi instruction set contains more variants of the instructions found
in Wasm. These variants are needed because Wasmi uses registers for local variables;
therefore many instruction exists in a variant for immediate values (constants) as well as with
registers. Also, most instructions that manipulate data require source and destination registers
as parameters.

Special-Purpose Instructions
Instruction Parameters for Other Instructions

const32(value) , I64Const32(value) ,and F64Const32(value) are used to provide 32 bit
encoded constants (of type 132, 164, 0r F64 ,respectively) to preceeding instructions.

To pass a list of registers (of arbitrary length) to a preceeding instruction, the following
instruction parameters are used:

66/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/mod.rs#L49-L72

Instruction Contents

Register(ro) 1 register

Register2(ro,ri) 2 registers

Register3(ro,ri1,r2) 3 registers

RegisterList(ro,r1,r2) 3 registers, indicating that more registers follow

In order to provide more than 3 registers, a number of RegisterList instructions is followed by

afinal Register , Register2 oOr Register3 one.

For indexes that refer to tables, data segments, or element segments, there are specialised

instruction parameters:

Instruction

Contents

TableIdx(idx)

A table index, consisting of 4 8-bit unsigned integral numbers

DataSegmentIdx(idx)

A data segment index (32-bit unsigned integral number)

ElementSegmentIdx(idx)

A data segment index referring to an element segment

Copying and Filling Registers

Wasmi requires utility instructions to copy values between registers or write immediate values

into registers.

These instructions typically use a RegistersSpan of contiguous registers as the copy target,

unless it is a single register (ro).

Instruction

Description

Copy(ro,ri1)

copies contents of r1 to ro

Copy2(span,ri,r2)

copies ri and r2 to the given target span

CopyImm32(ro,value)

copies immediate 32-bit value to ro

CopyI64Imm32(ro,value)

copies immediate 32-bit value to ro asan 164

CopyF64Imm32(ro,value)

copies immediate 32-bit value to ro asan Fé4

CopySpan(span, span2, len)

copies len values from source span2 totarget span

CopyMany(span, [ri1,r2])

copies more than 2 registers (2 in instruction, more following) to target
span
Must be followed by a list of instructions as instruction parameters

CopySpan and CcopyMany also have variants CopySpanNonOverlapping and

copyManyNonOverlapping . These variants assume that the given target registers are not read
(as source registers) after having been written to, when performing the copy operation in a

forward pass through the spans.

Fuel Consumption (if enabled)

67/129

Wasmi supports measuring execution effort by a special instruction consumeFuel(fuel) which
carries an unsigned 32-bit BlockFuel integral number, described as a resource measure of
executing a basic block.

Numeric Instructions

As in Wasm, arithmetic and other numeric instructions are grouped by underlying numeric types
(1 forintegral numbers vs. F for floating-point decimals), as well as by the respective size in
bits (32 or 64 in the instruction set). This numeric type prefix can be 132, 164, F32 or F64 .

Likewise, variants for signed or unsigned interpretation of the arguments exist equivalently to
the ones in Wasm (infix s for signed or U for unsigned).

NB the description here is simplified in that it does not consider NaN or Infinity arguments.
The full semantics of the operations on F32 and F64 when applied to NaN or Infinity
values is intended to be the same as in Wasm but not reproduced here.

Comparison instructions take three arguments, commonly registers (denoted ro, ri,and
r2 below). The return value is stored in ro .

132 and 164 comparisons have variants with tmm16 suffix, which contain an immediate 16-
bit encoded value instead of r2 to serve as the second argument.

Instruction Description

re <- ri1 == r2

I<SIZE>32Eq(r0,ri,r2 . .
o (OMETE2) Variants: I<SIZE>EqImm16(r0,rl,imm)

ro <- r1 !'=r2

S STZEZs2NE (RO Variants: I<SIZE>NeImm16(ro,rd1,imm)

ro <- ri < r2 (signed)

I<SIZE>32LtS(re, ri, r2 :)
= O (i (72) Variants: I<SIZE>LtSImm16(ro,ri,imm)

ro <- ri < r2 (unsigned)

I<SIZE>32LtU(r0,r1,r2 .
(ré,ri,r2) Variants: I<SIZE>LtUImm16(r®,rd1,imm)

ro <- ri > r2 (signed)

I<SIZE>32GtS(ro,ri, r2 -)
(GOMEPE) Variants: I<SIZE>GtSImm16(r0O,ri1,imm)

ro <- ri > r2 (unsigned)

I<SIZE>32GtU(rO,r1,r2 . .
(Ol (2 Variants: I<SIZE>GtUImm16(r®,rl,imm)

ro <- ri <= r2 (signed)

I<SIZE>32LeS(ro,r1,r2 ’
(2] Variants: I<SIZE>LeSImm16(r0,ri,imm)

ro <- ri <= r2 (unsigned)

I<SIZE>32LeU(rO,r1,r2 " .
eu(roe,ri, r2) Variants: I<SIZE>LeUImm16(r0,r1,imm)

ro <- ri >= r2 (signed)

I<SIZE>32GeS(ro,ri,r2) Variants: I<SIZE>GeSImm16(re,rl,imm)

ro <- ri >= r2 (unsigned)

I<SIZE>32GeU(r0,ri,r2 - .
(GEMETI) Variants: I<SIZE>GeUImm16(r0O,rl,imm)

where <SI1zE> is either 32 or 64 .

68/129

For floating point decimals, there are no variants for immediate arguments and no unsigned
interpretation exists. Consequently, there are fewer instructions.

Instruction Description
F<SIZE>EQq(r0,r1,r2) re <- ri1 == r2
F<SIZE>Ne(r0,r1,r2) re <- ri !'=r2
F<SIZE>Lt(rO,r1,r2) ro <- ri1 <r2
F<SIZE>Le(rO,r1,r2) ro <- rl <=r2
F<SIZE>Gt(rO,r1,r2) ro <- ri > r2
F<SIZE>Ge(rO,r1,r2) re <- ri >=r2
where <SIzE> is either 32 or 64 .
Unary operations take two registers, ro and ri , as arguments, and store the return value in
ro .
Instruction Description

I<SIZE>Clz(ro,r1)

ro

<- amount of leading zeros in the binary representation of r1

I<SIZE>Ctz(ro0,r1)

ro

<- amount of trailing zeros in the binary representation of r1

I<SIZE>Popcnt(ro,ri)

ro

<- amount of 1 s in the binary representation of ri

where <SI1ZE> is either 32 or 64 .

Instruction

Description (simplified)

F<SIZE>Abs(r0Q,r1)

ro

<- absolute value of FP decimal value in r1

F<SIZE>Neg(ro,ri1)

ro

<=pEra

F<SIZE>Ceil(ro,r1)

ro

<- smallest integral number larger than FP decimal value in ri1

F<SIZE>Floor(ro0,r1)

ro

<- largest integral number smaller than FP decimal value in ri1

F<SIZE>Trunc(rO,r1)

ro

<- ri truncated towards zero

F<SIZE>Nearest(ro,ri1)

ro

<- r1 rounded towards the nearest integral, preferring even numbers

F<SIZE>Sqrt(ro,r1)

ro

<- square root of value in ri1

where <SIZE> is either 32 or 64 .

Binary Operations take 3 registers arguments, commonly registers (denoted ro, ri, and
r2 below). The return value is always stored in ro .

As for the comparison operations, binary operations for integral numbers come with variants
(with tmmi6 suffix) where the register argument r2 is replaced by an immediate 16-bit
encoded value. In addition, the variants with suffix Immi6rev exist for the non-commutative
operations, which replace the register argument r1 .

69/129

Again, <s1ize> iseither 32 or 64 in all tables in this subsection.

Instruction

Description

I<SIZE>Add(re,ri,r2)

ro <- ri1 + r2
Variants: I<SIZE>AddImm16(r0O,ri,imm)

I<SIZE>Sub(re,ri,r2)

ro <- r1 - r2
Variants: I<SIZE>SubImm16Rev(r0,ri,imm)

I<SIZE>Mul(r@,ri,r2)

re <- ri * r2
Variants: I<SIZE>MulImm16(r0O,ri,imm)

I<SIZE>DivS(ro,ri,r2)

ro <- ri / r2 (signed truncated)
Variants: I<SIZE>DivSImm16(r0,rdi,imm) ,
I<SIZE>DivSImm16Rev(r0,imm, r2)

I<SIZE>DivU(rO,r1,r2)

ro <- ri / r2 (unsigned truncated)
Variants: I<SIZE>DivUImm16(r®,r1,imm) ,
I<SIZE>DivUImm16Rev(r®,imm,r2)

I<SIZE>RemS(ro,ri,r2)

ro <- ri % r2 (signed truncated)
Variants: I<SIZE>RemSImm16(rQ,r1,imm) ,
I<SIZE>RemSImml6Rev(r0,imm, r2)

I<SIZE>RemU(ro,ri,r2)

ro <- ri % r2 (unsigned truncated)
Variants: I<SIZE>RemUImm16(r®,r1,imm) ,
I<SIZE>RemUImm16Rev(r®,imm, r2)

Instruction

Description

I<SIZE>And(ro,ri,r2)

ro <- ri & r2 (bitwise)
Variants: I<SIZE>AndImm16(r0Q,rl,imm)

I<SIZE>O0r(r0,r1,r2)

ro <- ri | r2 (bitwise)
Variants: I<SIZE>0rImm16(r0,ri,imm)

I<SIZE>Xor(re,ri,r2)

ro <- ri A r2 (bitwise)
Variants: I<SIZE>XorImmi16(r0,ri,imm)

There are special fused instructions combining bitwise operations and test whether the result is

Zero:

Instruction

Description

I<SIZE>AndEqz(re,ri,r2)

ro <- 0 == r1 & r2 (fused & and test)
Variants: I<SIZE>AndEqzImm16(r@,r1,imm)

I<SIZE>OrEqz(ro,r1,r2)

ro <- 0 == r1 | r2 (fused | and test)
Variants: I<SIZE>0rEqzImm16(r0O,rl,imm)

I<SIZE>XorEqz(r@,ri,r2)

ro <- 0 == r1 A r2 (fused ” and test)
Variants: I<SIZE>XorEqzImm16(r@,rd1,imm)

70/129

Instruction

Description

I<SIZE>Sh1(ro,r1,r2)

ro <- ri << r2 (logical)
Variants: I<SIZE>ShlImm(r@,r1,imm) , I<SIZE>ShlImm16Rev(r0,imm,r2)

I<SIZE>Shru(r0@,r1,r2)

ro <- r1 >> r2 (logical unsigned)
Variants: I<SIZE>ShruImm(r@,ri1,imm) ,
I<SIZE>ShrUImmil6Rev(r0,imm, r2)

I<SIZE>ShrS(ro,ri,r2)

ro <- ri >> r2 (logical signed)
Variants: I<SIZE>ShrSImm(r0,ri,imm)
I<SIZE>ShrSImml6Rev(r0,imm, r2)

I<SIZE>Rotl(rO,r1,r2)

ro <- bitsof ri rotated leftby r2 mod <size>
Variants: I<SIZE>RotlImm(r@,ri1,imm) ,
I<SIZE>RotlImm1l6Rev(r0,imm,r2)

I<SIZE>Rotr(ro,ri,r2)

ro <- bits of ri rotated rightby r2 mod <size>
Variants: I<SIZE>RotrImm(r@,ri1,imm) ,
I<SIZE>RotrImml6Rev(r0,imm,r2)

Instruction

Description

F<SIZE>Add(ro,ri,r2)

ro <- ri1 + r2

F<SIZE>Sub(re,ri,r2)

ro <- r1 - r2

F<SIZE>Mul(re,ri,r2)

ro <- ri1 * r2

F<SIZE>Div(r@,r1,r2)

ro <-ri1/ r2

F<SIZE>Min(re,ri,r2)

ro <- if ri1 < r2 then ri else r2

F<SIZE>Max(re,ri,r2)

r@ <- if r1 < r2 then r2 else r1

F<SIZE>Copysign(rO,ri,r2)

re <- if sgn(ri1) == sgn(r2) then ri1 else r1 * (-1)
Variant: F<SIZE>CopysignImm(r@,ri,sign)

Conversions between numeric types follow the respective Wasm instruction set.

Instruction

Description

I32WrapI64(roe,ri,r2)

ro <- ri1 mod 2732

I64ExtendI32S(ro,ri,r2)

ro <- ri sign-extended to 64 bit

I64ExtendI32U(ro,ri1,r2)

ro <- ri extended to 64 bit (prefixing zeros, no sign)

I<N>Extend<M>S(ro,r1,r2)

ro <- ri1 sign-extended to <n> bits
from Wasm "sign-extension" proposal

where <N> is 32 or 64, <M> is 8, 16, 0or 32, and <N> > <M> .

Instruction

Description (simplified)

I<N>TruncF<M>S(ro,ri,r2)

ro <- trunc(ri) ifinrange [-2A(<N>-1)..2A(<N>-1) - 1]

I<N>TruncF<M>U(ro0,r1,r2)

re <- trunc(ri) ifinrange [0..2/<N>-1]

F<N>ConvertI<M>S(ro,ri,r2)

ro <- float(ri) (as definedin Wasm)

F<N>ConvertI<M>U(ro,ri,r2)

ro <- float(signed(ri)) (as defined in Wasm)

I<N>TruncSatF<M>S(ro,ri,r2)

as I<N>TruncF<M>S butreturns O for nan and max/min value for infinity
from Wasm "non-trapping float-to-int conversions" proposal

I<N>TruncSatF<M>U(ro,ri1,r2)

as I<N>TruncF<M>U butreturns 0 for nan and max/min value for infinity
from Wasm "non-trapping float-to-int conversions" proposal

717129

where <nN> and <M> are 32 or 64.

Instruction

Description

F32DemoteF64(r0,r1,r2)

Double to Float conversion (maybe infinity)

F64PromoteF32(r0,ri,r2)

Float to Double extension (identical value)

Reference Instructions

Producing a function reference works as in Wasm:

Instruction

Description

RefFunc(roe,r1)

ro <- ref ri

No null check exists for function references, as there is no stack (the value to check will be in

a register).

Parametric Instructions

The Wasm drop instruction does not exist because no stack is managed. The select

instruction exists in several variants which each require to appear in a certain context (of

instruction parameters following).

A register or constant value must follow as a separate instruction parameter for the following

two variants:

Instruction

Description

Select(ro,r1,r2)

ro <- if r1 then r2 else <NEXT>
A Register or Const instruction parameter providing <NexT> must follow

SelectRev(ro,ri,r2)

ro <- if ri then <NEXT> else r2
A Register or const instruction parameter providing <nexT> must follow

For the Imm variants, the respective select instruction must appear pairwise, with two
arguments each: one register argument ro , and one immediate argument imm . The
arguments are indexed by instruction 1 or 2 below.

Instruction

Description

SelectImm32(ro,imm)

ro(1) <- if ro(2) then imm(1) else imm(2)
imm(_) are immediate 32-bit integers.

SelectI64Imm32(r0O, imm)

ro(1) <- if ro(2) then imm(1) else imm(2)
imm(_) are immediate 64-bit integers that fit into 32 bit.

SelectF64Imm32(r0O, imm)

ro(1) <- if ro(2) then imm(1) else imm(2)
imm(_) are immediate 64-bit floats that fit into 32 bit.

Variable Instructions

72/129

In Wasmi, local variables are held in registers. Therefore, get and set for variables only

apply to global variables (of initialised modules).

Instruction

Description

GlobalGet(ro,r1)

ro <- value of global variable at r1

GlobalSet(ro,r1)

Set global variable at ro tovaluein ri

Variants: GlobalSetI32Imm16(r®,imm) , GlobalSetI64Imm16(r®,imm)

Table Instructions

In comparison to Wasm, the Wasmi table element access instructions are similar but require
the table index to be provided in a subsequent instruction parameter.

Instruction

Description

TableGet(r0,r1)

reads table tidx atindexin ri into re
An instruction parameter TableIdx tidx must follow

TableGetImm(ro,idx)

reads table tidx atindex idx into ro
An instruction parameter TableIdx tidx must follow

TableSet(ro,r1)

writes value in r1 into table tidx atindexin ro
An instruction parameter TableIdx tidx must follow

TableSetAt (idx,ri1)

writes value in r1 into table tidx atindex idx
An instruction parameter TableIdx tidx must follow

TableSize(ro, tidx)

stores size of table tidx in ro

TableGetImm and TableSetAt contain an immediate index idx , while TableGet and
Tableset provide the index in a register argument.

There are a number of variants for copying, filling, and initialising tables.

TableCopy* instructions copy data between tables. All variants use three arguments dst ,
src ,and len and additional instruction parameters for destination and source of the copy.
They vary in whether arguments are registers or constant (16-bit encoded) values.

73/129

Instruction Description

copies *r2 (len) many values from table srcTidx starting atindexin ri
to table destTidx starting atindexin ro

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopy(ro,ri,r2)

copies *r2 (len) many values from table srcTidx starting atindexin ri
to table destTidx starting atindex dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyTo(dst,ri1,r2)

copies *r2 (len) many values from table srcTidx starting atindex src to
table destTidx starting atindexin ro

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFrom(r@,src,r2)

copies *r2 (len) many values from table srcTidx starting atindex src to
table destTidx starting atindex dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromTo(dst,src,r2)

copies len many values from table srcTidx starting atindexin ri to
table destTidx starting atindexin ro

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyExact(r0,r1, len)

copies len values from table srcTidx starting atindexin ri to table
destTidx starting atindex dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyToExact (dst, r1, len)

copies len values from table srcTidx starting atindex src to table
destTidx starting atindex in ro

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromexact(roe,src, len)

copies len values from table srcTidx starting atindex src to table
destTidx starting atindex dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromToExact(dst, src, len)

As in Wasm, TableInit* instructions copy data from an element segment to a table. Like
TableCopy , all TableInit* instructions have dst, src,and len arguments and differ in
which ones are provided as registers or as (16-bit encoded) constants. TableInit*

instructions require a destination TableIdx and a source ElementIdx instruction parameter to
follow.

74/129

Instruction Description

copies *r2 (len) many values from segment srceidx starting at index in
TableInit(ro,ri,r2) ri totable destTidx starting atindexin ro
A Tableldx destTidx and an ElementIdx srcEIdx instruction must follow

copies *r2 (len) many values from segment srceidx starting at index in
TableInitTo(dst,r1,r2) ri totable destTidx starting atindex dst
A Tableldx destTidx and an ElementIdx srceIdx instruction must follow

copies *r2 (len) many values from segment srcEidx starting at index
TableInitFrom(r@,src,r2) src totable destTidx starting atindexin ro
A Tableldx destTidx and an ElementIdx srceIdx instruction must follow

copies *r2 (len) many values from segment srcEidx starting at index
TableInitFromTo(dst,src,r2) src totable destTidx starting atindex dst
A Tableldx destTidx and an ElementIdx srctEIdx instruction must follow

copies len many values from segment srceidx starting atindexin ri to

TableInitExact(ro,ri, len) table destTidx starting atindexin ro
A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

copies len values from segment srceidx starting atindexin ri to table

TableInitToExact(dst,ri, len) destTidx starting atindex dst
A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

copies len values from segment srceidx starting atindex src to table
TableInitFromExact(re,src, len) destTidx starting atindex in ro
A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

copies len values from segment srceidx starting atindex src to table
TableInitFromToExact(dst,src, len) destTidx starting atindex dst
A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableFill instructions use arguments dst, len,and value .The value tofillinis always
provided in a register, while dst and 1len may be either from registers or as constants. Again,
a TableIdx must follow to indicate the table to modify.

Instruction Description

writes value in r2 *ri (len) many times into table tidx , starting at index
TableFill(ro,r1,r2) in ro
A TableIdx tidx instruction parameter must follow

writes value in r2 *ri (len) many times into table tidx , starting at index
TableFillAt(dst,r1,r2) dst
A TableIdx tidx instruction parameter must follow

writes value in r2 len many times into table tidx , starting at index in

TableFillExact(ro, len,r2) ro
A TableIldx tidx instruction parameter must follow

writes value in r2 len many times into table tidx , starting at index dst

TableFillAtExact(dst, L 2) .
s HERLCE e LEpiie) A TableIdx tidx instruction parameter must follow

The TableGrow instructions enlarge a table and return the old table size (or -1) in the first
argument register (ro). The size to grow by is either from argument register r1 or immediate,
the value to fill new cells with is provided in register r2 .

75/129

Instruction Description

Enlarges table tidx by sizein ri, filling with value from r2 . Returns
TableGrow(r@,ri,r2) previous size in ro (or -1 on errors)
A TableIdx tidx instruction parameter must follow

Enlarges table tidx by sz, filling with value from r2 . Returns previous
TableGrowImm(ro,sz, r2) sizein ro (or -1 on errors)
A TableIdx tidx instruction parameter must follow

In Wasm, element segments in a module may be dropped to prevent further use (as a hint for
possible optimisations). Correspondingly, Wasmi provides an instruction Elembrop which
carries an element/data segment index and discards the indicated segment.

Memory Instructions

Load instructions access memory at a given offset and load bytes representing a value of the
target type (132, 164, F32, F64) into the argument register (here ro). The 2nd argument
may be a register (in which case a const32 instruction must follow to provide an offset value),
or a constant offset. Inthe offset16 variant, a 3rd argument provides a constant offset which
must be representable in 16 bits, from a register (2nd argument).

Instruction Description

ro <- value loaded from ri + <offset>

<TYPE>Load(ro,r1 . .
(re,r1) A const32 <offset> instruction parameter must follow

<TYPE>LoadAt (r@,offset) ro <- value loaded from given offset (2nd arg.)

<TYPE>LoadOffset16(ro,r1, offset) ro <- value loaded from ri + offset (2nd/3rd arg.)

where <TYPE> iS I32, 164, F32,0r F64 .

For 132 and 164 loads, additional instructions (equivalent to the ones in Wasm) exist to load
fewer bytes and extend the value's bit pattern appropriately (unsigned or signed as per u or s
after <m>).

Instruction Description

as above, but reading <v> bits
I<N>Load<M>u i i

A const32 <offset> instruction parameter must follow
e — as above, but reading <v> bits, sign-extending

A const32 <offset> instruction parameter must follow
I<N>Load<M>uAt as above, but reading <v> bits
I<N>Load<M>sAt as above, but reading <v> bits, sign-extending
I<N>Load<M>uOffset16 as above, but reading <v> bits
I<N>Load<M>sOffset16 as above, but reading <v> bits, sign-extending

where <N> is 32 or 64, and <> is 8, 16, or 32 (if <N> is 64).

76/129

For Store instructions, the two arguments ro and offset define the place to store. There
are 5 variants that differ in:

* how the stored value is specified:
e either in a following Register instruction parameter,
e Or as a register within the same instruction (limiting the size of offset to 16 bit)
e or as a 16-bit encoded value within the same instruction (limiting the size of offset
to 16 bit).

« whether the target address is constant
« the target address can be in a register, combined with a given offset,
e Or given as a constant (in the for StoreAt variants).

Instruction Description

store value in r1 ataddress ro + <offset>

<TYPE>Store(r0,offset . A A
(e) A Register <ri> instruction parameter must follow

<TYPE>StoreOffset16(ro,ri,offset) store value in r1 at address ro + <offset>
<TYPE>StoreOffset16Imm16(ro, value, offset) store value ataddress ro + offset
<TYPE>StoreAt (addr, reg) store value from reg at addr
<TYPE>StoreAtImmi6(addr,value) store value at addr

where <TYPE> iS 132, 164, F32,0r F64 .

For the integral types, there are variants for storing smaller values (of 8 or 16 bit width for 132
and 8, 16, or 32 bit width for 164), each with similar variants as the ones described above.

Instruction Description

as above, but truncating the value to bits

I<N>St <M>(ro,offset i i
ore<M>(ro, offset) A Register r instruction parameter must follow

I<N>Store<M>0ffset16(ro,ri,offset) as above, but truncating the value to bits
I<N>Store<M>0ffset16Immi6(r0, value, offset) as above, but truncating the value to bits
I<N>Store<M>At(addr, reg) as above, but truncating the value to bits
I<N>Store<M>AtImmi6(addr, value) as above, but truncating the value to bits

where <N> is 32 or 64, and <> is 8, 16, or 32 (if <N> is 64).

Store instructions for floating-point decimals come in similar variants but without the immediate
value variants.

77/129

Instruction

Description

F<N>Store(ro,offset)

store value in r1 ataddress ro + <offset>
A Register <ri> instruction parameter must follow

F<N>StoreOffset16(ro,ri,offset)

store value in r1 at address ro + <offset>
The offset is small (16 bit)

F<N>StoreAt(addr, ri1)

store value in r1 at addr

where <nN> is 32 or 64.

Memory management and initialisation instructions in Wasmi have different variants
according to how the arguments are provided (in registers or as immediate values). No
instruction parameters are required because Wasm (currently) limits each module's memories to

exactly one.

Instruction

Description

MemorySize(ro)

ro <- current size of memory (in 64K pages)

MemoryGrow(re, ri)

grow memory by size in r1 , return old size in ro

MemoryGrowBy(r@, sz)

grow memory by sz , return old size in ro

Instruction

Description

MemoryCopy(re,ri,r2)

copies len bytes from mem[src..] to mem[dst..]
len in r2, src in ri1, dst in ro

MemoryCopyTo(dst,ri,r2)

copies len bytes from mem[src..] to mem[dst..]
len in r2, src in r1

MemoryCopyFrom(r@,src,r2)

copies len bytes from mem[src..
len in r2, dst in re

-

0 mem[dst..]

MemoryCopyFromTo(dst,src,r2)

copies len bytes from mem[src..] to mem[dst..]
len in r2

MemoryCopyExact(ro,r1, len)

copies len bytes from mem[src..] to mem[dst..]
src in ri, dst in ro

MemoryCopyToExact (dst, r1, len)

copies len bytes from mem[src..] to mem[dst..]
src in ri

MemoryCopyFromExact(r@, src, len)

copies len bytesfrom mem[src..] to mem[dst..]
dst in ro

MemoryCopyFromToExact(dst, src, len)

copies len bytes from mem[src..] to mem[dst..]

78/129

Instruction

Description

MemoryFill(re,r1,r2)

writes 8-bit val into mem[dst..dst+1len]
val in r1, len in r2, dst in ro

MemoryFillAt(dst,r1,r2)

writes 8-bit val into mem[dst..dst+len]
val in r1, len in r2

MemoryFillImm(rO,val,r2)

writes 8-bit val into mem[dst..dst+1len]
len in r2, dst in ro

MemoryFillExact(re,ri, len)

writes 8-bit val into mem[dst..dst+len]
val in r1, dst in roe

MemoryFillAtImm(dst,val,r2)

writes 8-bit val into mem[dst..dst+len]
len in r2

MemoryFillAtExact(dst,ri1, len)

writes 8-bit val into mem[dst..dst+len]
val in ri

MemoryFillImmExact(ro,val, len)

writes 8-bit val into mem[dst..dst+len]
val in r1, len in r2

MemoryFillAtImmExact(dst,val, len)

writes 8-bit val into mem[dst..dst+1len]

The vemoryInit family of instructions copy data from a given data segment to memory,
therefore a DatasegmentIdx must follow to indicate which segment to use.

MemoryInitFromExact(r0,src, len)

mem[dst..dst+len]
dst in ro
A DataSegmentIdx dseg instruction parameter must follow

Instruction Description
for data segment index dseg , copies data[dseg][src..src+len] to
MemoryInit(ro,ri,r2) e [0S Ed S Elem]
y o dst in re, src in r1, len in r2
A DataSegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to
. mem[dst..dst+len]
MemoryInitTo(dst,ri,r2) SFR in 6D, 6IEM in (62
A DataSegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to
MemoryInitFrom(r@,src,r2) ZET[?r?tl.'(:)dStltelnenil!l -
A DpataSegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to
. mem[dst..dst+1len]
MemoryInitFromTo(dst,src,r2) Ten in T2
A patasegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to
MemoryInitExact(roe,ri, len) ZET[?st;édStsfcer}% =0
A DatasegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to
. mem[dst..dst+len]
MemoryInitToExact(dst,ri1, len) ST in (G
A DataSegmentIdx dseg instruction parameter must follow
for data segment index dseg , copies data[dseg][src..src+len] to

MemoryInitFromToExact(dst, src, len)

for data segment index dseg , copies data[dseg] [src..src+len] to

mem[dst..dst+len]
a DataSegmentIdx dseg instruction parameter must follow

79/129

As in Wasm, data segments can be dropped to prevent further access (enabling optimisations)
using the Wasmi instruction batabrop , which carries a data segment index.

Control Instructions

The Trap instruction does what its name suggests: Execution fails with the given "trap code"
indicating an error condition.

A wide variety of branching instructions exist in the Wasmi instruction set. A common trait to
all of them is that they operate using an offset from the current instruction pointer (IP) rather
than the nesting levels that Wasm uses in its respective br instruction.

Instruction Description

Branch(offset) modifies instruction pointer by adding offset

Many branch instructions were added to combine certain tests with a subsequent conditional
branch on the result. Each of these instructions has either two argument registers and one (16-
bit) offset , or one argument register, one (16-bit-encoded) immedate value argument, and
one (16-bit) offset .

Instruction Description
Branch<TYPE><OP>(r0,r1,offset) adds offset toIPif ro <op> ri
Branch<TYPE><OP>Imm(r@,val,offset) adds offset toIPif ro <op> val

where <TYPE> and <op> are atype and a binary operation from the table below:

80/129

OP Description Types
And bit-wise & 132

or bit-wise | 132

Xor bit-wise » (xor) 132
AndEqz bit-wise & followed by comparing to zero 132
Oreqz bit-wise | followed by comparing to zero 132
XorEqz bit-wise » followed by comparing to zero 132

Eq == unsigned 132, 164
Ne = unsigned 132, 164
LtS < signed 132, 164
Ltu < unsigned 132, 164
Les <= signed 132, 164
LeU <= unsigned 132, 164
GtS > signed 132, 164
Gtu > unsigned 132, 164
GeS >= signed 132, 164
GeU >= unsigned 132, 164

(Note the absense of And, or ,and Xor variants for 164).

For floating-point decimals, there are no immediate variants (and no signedness).

Instruction Description
Branch<TYPE><OP>(r0@, r1,offset) adds offset toIPif ro <op> ri
OP Description Types
Eq = F32 , F64
Ne 1= F32, F64
Lt < F32, F64
Le <= F32, F64
Gt > F32, F64
Ge >= F32, F64

All these instructions rely on a special encoding with a 16-bit offset.

For cases where the offset is too large to be encoded as a 16-bit value, a generic fall-back
instruction exists, which encodes the offset (32-bit) and the operation to perform as a special
combined param (eter), read from a third argument register (r2) of the instruction.

Instruction

Description

BranchCmpFallback(re,ri,r2)

adds offset tolIPif ro <op> r1
offset and <op> read from a parameter param passed in a third register
argument

81/129

For multi-target branches, (Wasm instruction br_table), Wasmi uses the BranchTable
instruction. This instruction in Wasmi contains the scrutinee register and the length of the
branch table as arguments, and expects the respective following instructions (after an optional
Copy* instruction) to be Branch or Return* instructions that constitute the branch table
(appropriate amount indicated by the length, including the default).

Instruction Description

selects branch/return instruction indicated by value in index register, from
len_targets branch or return instructions that follow

Next len_targets instructions expected to be Branch or Return*
(includes default if index value out of range).

BranchTable(index, len_targets)

All function call instructions call* have a register span results (of unknown length) to
indicate where the function results should be stored. Functions are either referred-to by their
function index func , or called indirectly through a table, indicating the function type by an index
func_type into the surrounding module's known types. Wasmi distinguishes internal functions
from imported ones, and uses special call* variants (suffixed with ©) for functions without
arguments. If arguments are required, they are passed as a register list that follows the call*
instruction.

Instruction Description

callInternal@(results, func) Calls an internal function (by index func) without arguments

Calls an internal function (by index func)

CallInternal(results, func X .
() Followed by a register list for the arguments

CallImportedo(results, func) Calls an imported function without arguments

callImported(results, func) Calls an imported function (by index func)
! Followed by a register list for the arguments

Calls a function indirectly through a table, without arguments.

CAOECEe (ST UNCREY) Followed by callIndirectParams (Or Immi6 variant)

Calls an function indirectly through a table.
CallIndirect(results, func_type) Followed by callindirectParams (or Immi6 variant), and a register list for
the arguments

The indirect call uses the following instruction parameters to supply the table and index for the
indirect call:

Instruction Description
CallIndirectParams(tIdx, reg) holds a table index tIdx and aregister reg containing an index
CallIndirectParamsImmi6(tIdx,index) holds a table index tidx and a 16-bit index

For tail-call optimisation, there are special Returncall* variants corresponding to the above
instructions, which reuse the prior function call's results registers:

82/129

Instruction Description

ReturnCallInternal®(func) tail-call internal function (by index func) without arg.s

tail-call internal function (by index func).

ReturnealinteRal(ianc) Followed by a register list for the arguments

ReturncallImported®(func) tail-call imported function (by index func) without arg.s

tail-call imported function (by index func).

ReturnCallImported(func X
K () Followed by a register list for the arguments

tail-call a function from a table without arg.s.

RECIRNCANITdIHECEO (RINCRETRE) Followed by callIndirectParams (OF ~Immi6 variant)

tail-call a function from a table.))
ReturnCallIndirect(func_type) Followed by callindirectparams (or ~Imm16 variant) and then a register

list for the arg.s

For returning from function calls, variants exist to return a number of immediate values or
registers.

Instruction Description

Return Returns from a function without return value

ReturnReg(ro) Returns value in register ro

ReturnReg2([ro,ri]) Returns values in registers ro and ri

ReturnReg3([ro,r1,r2]) Returns values in registers ro, ri,and r2

ReturnImm32(value) Returns an immediate 132 constant value

ReturnI64Imm32(value) Returns an immediate 164 constant value encoded in 32 bit
ReturnF64Imm32(value) Returns an immediate F64 constant value encoded in 32 bit
ReturnSpan(iter) Returns more than 3 registers, given as a register span iterator iter
ReturnMany(ro, ri, r2) Fezﬁg;gflg?re than 3 registers, ro, ri, r2, and the ones from a following

A special conditional return instruction (with the same variants as above) exists, which only
returns if a given condition register contains a non-zero value.

Instruction Description
ReturnNez(ro) If ro contains non-zero, returns from a function without return value
ReturnNezReg(ro, r1) If ro contains non-zero, returns value in r1
ReturnNezReg2(ro,ri,r2) If ro contains non-zero, returns values in registers ro and r1
ReturnNezImm32(ro,val) If ro contains non-zero, returns an immediate 132" “constant val
ReturnNezI64Imm32(r0,val) If ro contains non-zero, returns an immediate 164 val encoded in 32 bit
ReturnNezF64Imm32(r@,val) If ro contains non-zero, returns an immediate F64 val encoded in 32 bit

. If ro contains non-zero, returns more than 2 registers, given as an iterator
ReturnNezSpan(ro,iter) HIEETS
ReturnNezMany (ro, [r1, r2]) If ro contains non-zero, returns more than 2 registers, r1, r2, and the

R e ones following in a register list

Note the absense of a variant with 3 registers (one register is needed for the r0).

83/129

Appendix: Engine Class Diagrams

Engine

inner

Enginelnner

config: Config
code_map: CodeMap
stacks: EngineStacks

«RwLock<_>» «Mutex<_>»
func_types allocs
FuncTypeRegistry ReusableAllocationStack

max_height: usize

engine_idx: Engineldx validation:

f t :
unggd);p; Asren a< Vec<FuncValidatorAllocations>
DedupFuncTypeldx,
FuncType>
«Vec<_>»
[0..*] translation
Engineldx FuncTranslatorAllocations
32
= stack: ValueStack
instr_encoder: InstrEncoder
control_stack: ControlStack
buffer: TranslationBuffers
DedupFuncTypeldx
u32

84/129

Config

cached_stacks: usize
mutable_global: bool
sign_extension: bool
saturating_float_to_int: bool
multi_value: bool
bulk_memorty: bool
reference_types: bool
tail_call: bool
extended_const: bool

floats: bool

consume_fuel: bool
ignore_custom_sections: bool
compilation_mode: CompilationMode

stack_limits

limits

StackLimits

initial_value_stack_height: usize
maximum_value_stack_height: usize
maximum_recursion_depth: usize

EnforcedLimits

max_globals: Option<u32>
max_functions: Option<u32>
max_tables: Option<u32>
max_element_segments: Option<u32>
max_memories: Option<u32>
max_data_segments: Option<u32>
max_params: Option<i32>
max_results: Option<u32>

«Option<_>»

min_avg_bytes_per_function

85/129

AvgBytesPerunctionLimit

req_funcs_bytes: u32
min_avg_bytes_per_function: u32

EngineFunc CodeMap

us2 features: WasmFeatures
Funcldx
«Mutex<Arena<EngineFunc, _>>»
u32 [0..*] funcs
«enum»
Typelndex FuncEntity

u32

FuncEntity:: FuncEntity:: FuncEntity:: FuncEntity:: FuncEntity::

Uninit Uncompiled Compiling FailedToCompile Compiled

UncompiledFuncEntity

index: Funcldx
bytes: SmallByteSlice
module: ModuleHeader
validation:
Option<(Typelndex, ValidatorResources)>

86/129

CompiledFuncEntity

instrs: Pin<Box<Instruction>>
consts: Pin<Box<UntypedVal>>
len_registers: u16

EngineStacks

limits: StackLimits

keep: usize
«Vec<_>» [0..*] stacks
InstructionPtr Stack
ptr: *const Instruction
calls values
executor::stacks:: executor::stacks::
CallStack ValueStack

values: Vec<UntypedVal>

recursion_limit: usize max_len: usize

«HeadVec<_>»

«Vec<_>» [0..*] frames [0..4] instances

CallFrame Instance

instr_ptr: InstructionPtr
results: RegisterSpan
changed_instance: bool

offsets
StackOffsets
base: usize
frame: usize

87/129

Appendix: FuncTranslator Class Diagrams

FuncTranslator

func: Funcldx

engine: Engine
module: ModuleHeader
reachable: bool

«Option<_>»

fuel_costs alloc
FuelCosts FuncTranslatorAllocations
base: ué4 stack: ValueStack
copies_per_fuel: NonZero<u64> instr_encoder: InstrEncoder
bytes per_fuel: NonZero<u64> control_stack: ControlStack
buffer: TranslationBuffers

Funcldx

u32

88/129

translator::stack::
ValueStack

¢

providers

reg_alloc

consts

ProviderStack

RegisterAlloc

FuncLocalConsts

providers: Vec<TaggedProvider>
len_locals: usize
use_locals: bool
locals: LocalRefs

preservations: MultiStash<()>
removed_preserved: BTreeSet<Key>
len_locals: u16

next_dynamic: i16

max_dynamic: i16

min_preserve: i16

defrag_offset: i16

const2idx:

BTreeMap<UntypedVal, Register>,
idx2const: Vec<UntypedVal>
next_idx: i16

phase
«enum» Key
AllocPhase -
usize
AllocPhase:: AllocPhase:: AllocPhase::
ConstLocal Local Dynamic

89/129

«enum»

TaggedProvider
TaggedProvider:: TaggedProvider:: TaggedProvider:: TaggedProvider:: TaggedProvider::
ConstLocal Local Dynamic Preserved ConstValue
Register TypedVal
i16
ty ?value
«enum» UntypedVal
ValType bits: ub4

ValType:: ValType:: ValType:: ValType:: ValType:: ValType::
132 164 F32 F64 FuncRef ExternRef

90/129

InstrEncoder

last_instr: Option<Instr>

notified_preservation: Option<Instr>

instrs labels

Instr

InstrSequence

LabelRegistry

u32

instrs: Vec<Instruction>

LabelRef

u32

«Vec<_>»
[0..*] labels

«enumy»
Label

«Vec<_>»
[0..*] users

LabelUser

label: LabelRef
user: Instr

Label::
Pinned

AllocPhase::
Unpinned

Instr

91/129

BlockHeight

u16

RegisterSpan

Register

translator:
ControlStack

«Vec<_>»
[0..*] frames

«enum»
ControlFrame

«T = TypedVal»
else_providers

ProviderSliceStack<T>

ends: Vec<usize>

«Vec<_>»
[0..*] providers

ControlFrame:: ControlFrame:: ControlFrame:: ControlFrame:: «enum»
Block Loop If Unreachable Provider<T>
Provider<T>::
IfControlFrame Register
Register
len_branches: usize
BlockControlFrame LoopControlFrame stack_height: BlockHeight

len_branches: usize
stack_height: BlockHeight
end_label: LabelRef
branch_params: RegisterSpan
consume_fuel: Option<Intsr>

end_label: LabelRef
branch_params: RegisterSpan
consume_fuel: Option<Intsr>
end_of_then_is_reachable:
Option<bool>

visited_else: bool

len_branches: usize
stack_height: BlockHeight
head_label: LabelRef
branch_params: RegisterSpan
consume_fuel: Option<Intsr>

UnreachableControlFrame

¢

reachability kind
block_type
«enum» «enum» «enumy»
BlockType IfReachability ControlFrameKind
| BlockType:: IfReachability:: ControlFrameKind::
Empty Both Block
else_label: LabelRef
| BlockType:: L IfReachabil ControlFrameKind::
Returns OnlyThen Loop
L] BlockType:: L | IfReachabilit; ControlFrameKind::
FuncType OnlyElse If
DedupFuncType

92/129

Provider<T>::
Const

TranslationBuffers

providers:
Vec<Provider<TypedVal>>
br_table targets: Vec<u32>

«Vec<_>»
[0..*] preserved

PreservedLocal

local: Register
preserved: Register

93/129

Appendix: Translation Sequence Diagrams

94/129

Module Parsing, Validation and Translation:

Overview
User
config (.} | config:
"1 config
i
|
Engine::new(config) ol engine:
| "1 engine
I
I
I
Fem i
: [
Module::new(engine, wasm) | ol modue:
T | "1 wodue
' [
' [
' [
I | o parser
| | ModuleParser
' [
' [
' [
| | WasmParser::new(0)
! I
! I
I I
! I
| I et
! I
[S () PN
| ! A T
| | parse_buffered(wasm) I
| | »>
I I
| &
< i
I
_______ :_ feawres Wasmreawres)
! I
: | Validator::new_with_features(features)
! I
! I
! I
| | e m s e -
! I
: | parse_buffered_impl(wasm)
I : <
! I
| | parse_buffered_L custom_sections: C
! I
! I
: | header: ModuleHeader
I : _____ i
! I
! I
! I
! I
I I
! I
! |
I I
! I
I |
! I
! I
I I
! I
| ke [
I |
l | module
| T !
| R I R I e '
I I
| module
| ! <
DI mode _____ R | |

wasm_parser:
WasmParser

95/129

validator:
Validator

Module Parsing, Validation and Translation:
1. Header Parsing

config parser wasm_parser: validator:
Config ModuleParser WasmParser Validator

I [1

parse_buffered_| custom_sections: Ci) o |

ModuleHeaderBuilder::new(engine) header_builder:

ModuleHeaderBuilder

g
]

[until code section / data section / end]

next_payload()

parse(wasm, true)

|

|

|

|

|

|

| »

| 1]

| oo Soremedpayiead

| |

| |

| |

| |

| |

| |
|
|
|
|
|
|
I
|

e mm e e e oo oo deoo oo
|
P get_enforced_limits() |
< |
|
limits: EnforcedLimits |
|
loop) [until end of section] |
| |
|
(parse next; check limits; transform; append to func_types) |
|
|
|

[payload s ..

consume_buffer(consumed, wasm)

finish()

|
I
|
|
|
|
|
|
|
|
:
t
|
0
|

header: ModuleHeader

.
|
header |
|
|
|

96/129

Module Parsing, Validation and Translation:

2. Code Parsing

A

engine: parser: wasm_parser: validator:
Engine ModuleParser Wasmparser Validator
User
= I I I [
| | | |
parse_buffered_code(wasm, header, custom_sections) o | |
I | |
N L L
loop) ! !
next_payload()		
parse(wasm, true) =		
"] I		
I consumed, payload		
> Saitiiid ittt		
consumed, payload		
I X		
<o		
consume_buffer(consumed, wasm)		
process_code_entry(func_body, bytes, header)		
P		
«		
next_func(header)		
T		
_translate_func(func_idx, engine_func, ..., bytes, header, func_to_validate) : :		
<		
________________________________ Ll		
T -~ 1		
& ----!		
ModuleBuilder::new(header, custom_sections)		
I [€---mmmmmmmmmmmmmmmes il I		
. module bulder o ____		

97/129

module_builder:
ModuleBuilder

User

Module Parsing, Validation and Translation:

3. Data Parsing

config parser wasm_parser validator module_builder:
Config ModuleParser WasmParser Validator ModuleBuilder
I T I I
| | | |
parse_buffered_data(wasm, module_builder) | | |
> [|
L t
loop J funtil end]
i |
|
next_payload() |
|
|
|
parse(wasm, true) ol

<

consumed, payload

[payload is DataSection(section)]

, get_enforced_limits()

<

limits: EnforcedLimits

C check limits

loop [until end of section]

consume_buffer(consumed, wasm)

i B S ittt A

finish()

|
module: Module

98/129

User
-~

wranslate_func(
func_index,
engine_func,

Someffunc_to_validate,

engine:

Engine

config.get_compilation_mode()

1 CompiationMode: Eager
!

into_validator(validation_allocs)

Function Parsing, Validation and Translation [CompilationMode:
Overview

func_to_validate:

FuncTovalidate

Funcvalidator (

1] validator:
Funcvalidator

translator:

FuncTransiator

validating_translator
ValidatingFuncTranslator

FunctionBody:new(offset, bytes)

function_body:
FunctionBody

innerrecylce_allocs(allocs)

99/129

wanslate_locals()

anslate_operators()

finish(offset, finalize)

T
|
|
I
<o s
| |
| FuncTranslationDriver:new(offset, bytes, validating_transiator) |
| T T FuncTransiatonbriver
| \ I
| | |
| I I
| | |
| | I
| \ I
| | |
| \ I
| | |
! 1 L
! \ ! T
| tanslatefinalize = func_entty -> innerinit_func(engine_func, func_entiy)) !
| T T P,
| | |
| I I
| | |
| | I
| \ I
| | |
| \ I
| | |
| \ I
| \ I
| | |
| | I
| \ I
| | |
| | I
| | |
| | I
| \ I
| | |
| \ I
| | |
| \ I
| \ I
o L alocs L o

e

Function Parsing, Validation and Translation [CompilationMode::Eager]:
1. Local Translation

validator: translator: validating_translator driver: function_body:
ValidatingFuncTranslator Driver i
User
- I I I I |
| | | | |
| | translate_locals() | o | |
I T I = |
| | | |
I I I get_locals_reader() L
| | |
| | |
| | | LocalsReader { ..} e
LocalsReader
| | |
| | |
| | |
| | |
| [| D |
! I ! locals |
| | | B |
| | | | 1
loop [tocals] | | | i
| | | | |
| | | ! |
I I I original_position() ~
| | | |
| | | < | offset
| | I D 1Tttt TTTT T |
! ! ! update_pos(offset) l |
| | L platep | | |
| | | |
| | | |
| I T T | |
| | | | |
| | | | read0 >
| | | |
| | | < amount, value_type
| | N A Dt Ent
| | |
| | | translate_locals(amount, value_type)
| |
| P define_locals(..., amount, value_type)
[T
|
_________ Lo
|
|
et foceistamoun, vae tpe)

alloc.stack register_locals(amount)

finish_translate_locals()

finish_translate_locals()

A

A

alloc.stack finish_register_locals()

100/129

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

User
.

Function Parsing, Validation and Translation [CompilationMode::Eager]:
Operator Translation

validator: translator:

validating_translator:

diiver.

function_body:

o

translate_operators()

get_operators_reader()

skip_locals(...)

OperatorsReader { ..} operators_reader:

OperatorsReader
b e
l
|
-4 |
;
loop. [until eof] H T T
[| I I |
| | I I |
| | | original_position() o
| | I T
| | I I
ofset
| | [B S e e e
| | I | |
| | | update_pos(ofiset | l
	I
	I
S g	
	I I
	I visit_operator(validating_tanslator)
	I >
	I I .
	I I LU0
	I
	I
! ! I	opcobe
	I I -==
	I (S '
	I
	I I oor T
	I I
	I
	I I
	I I
	I I
	I
	I I
	I [S !
	I I
	I I
: : I Vi OPCODE(., ARG i)	
	I
	validate_then_translate()
	I
	I
! I	
« visioryisit_OPCODE(.., ARG.i.)	
I	
""""	it
	I
	ViSt_OPCODE(... ARG....
ol	
I	
I	
e I	
I	
PR I	
[I N P	I
I	
I	
[e e e e >	
[N]	
I 1 T	
" :	
ensure_end() o !	
>

101/129

User

Function Parsing, Validation and Translation [CompilationMode::Eager]:

driver:

FuncTranslationDriver

finish(offset, finalize) |

Finalization
validating_translator: translator: engine:
ValidatingFuncTranslator FuncTranslator Engine
I ! !
update_pos(offset) | | |
»

| |
| |
"""""" T | |
| | |
finish(finalize) | | |
| |
finish(finalize) ‘ I I
> |
|
alloc.instr_encoder.defrag_registers(alloc.stack) |
|
|
|
|
|
|
alloc.instr_encoder.update_branch_offsets(alloc.stack) |
|
|
|
|
|
|
|
alloc.instr_encoder.drain_instrs() I
|
|
instrs |
ST, |
<o |
|
into_allocations |
|
|
|
translation_allocs |

it
_____ . |
< |
finalize: init_func(:

enginge_func,
func_entity=CompiledFuncEntity::new(..., intstrs, ...) |
) |
»
inner.code_map.init_func_as_compiled(
engine_func,
func_entity,
translation_allocs
<--=--=-=-=---- e

102/129

Appendix: Algorithmic Description of the
Translator

Control Instructions

nop

Nothing to do.

unreachable

1.
2.
3.

If the instruction is unreachable, return.
Else, encode a trap instruction.
Set reachability to false.

block

I

. If the instruction is unreachable, push the control stack to track the scope of the block, then

return.

. Preserve all local variables: replace all local registers on the value stack by a preservation

register allocated for the given local, and encode copy* instructions that copy locals to
their preservations.

. Create new label for the end of the block.
. Allocate new dynamic registers for the block parameters and results.

. Push the control stack.

loop

1.

o Ok~ WN

If the instruction is unreachable, push the control stack to track the scope of the block, then
return.

. Preserve all local variables.

. Push dynamic registers for block parameters.

. Encode copy instructions for the arguments.

. Create new label for the head of the loop, then pin it.
. Push the control stack.

103/129

if
1. If the instruction is unreachable, push the control stack to track the scope of the block, then
return.
2. Preserve all local variables.
3. Create new label for the end ofthe if-else-end (or if-end).
4. Allocate new dynamic registers for the block parameters and results.
5. Process the condition.
« If the condition is a constant, then only one of the branches is deemed reachable
(1fReachability), administer which one.
If only the else is deemed reachable, set reachability to false.
+ Otherwise, the condition is a register, and both branches are deemed reachable.
1. Store the input parameters for processing in the else branch.
2. Ensure that preservation registers are kept for the else branch.
3. Create a new label for the else branch.
4. Encode the branch instruction.

6. Push the control stack.

else

1. Pop the control stack.
If the frame belongs to an unreachable if instruction, then the else block is also
unreachable.
Push the control stack to track the scope of the block, then return.

2. Administer that the else block has been visited. This indicates that the control frame is
if-else-end and not if-end .

3. Ifthe then branch was deemed reachable, administer the reachability of the end of the
then block. This is important so that the reachability of the whole if can be established
upon visiting the corresponding end instruction.

4. If the else branch was deemed reachable, and there is an associated label for it, it means
that both both branches were deemed reachable.

1. If the end of the then block was reachable, encode copy instructions for the then
branch result, and encode the jump to the end of the if .

104/129

2. Set reachability to true.
3. Pinthe else label.
4. Restore input parameters.
5. Set reachability based on which of the branches were deemed reachable.
e The case for none of the branches is not possible.
e The case for both branches has already been handled.
e If only the else branch has been deemed reachable, then reachability is set to false.
Set it to true.
e If only the then branch has been deemed reachable, set reachability to false.

6. Push the control stack.

end

Pop the control stack. There are four cases based on the control frame.
end of an unreachable block

Nothing to do.

end ofa loop

Nothing to do.

end ofa block

1. If the control stack is empty, that means the end corresponds to the top-level function call.
Encode the return instruction.

2. If the end of the block is reachable and is branched to, encode copy instructions for the
block results.

3. Pin the block label.

4. If the block is branched to, push the result registers onto the value stack.

5. Set reachability to true if the current instruction is reachable or the block is branched to.

end ofan if
There are five cases.
Case 1: No branches deemed reachable

This case is not possible.

105/129

Case 2: Both branches deemed reachable, else block exists

1.

o b~ WODN

Compute reachability of the code following the if-else-end , based on the reachability of
the end of the branches and whether the block has been branched to.

. Pinthe else label.

. If the end of the else is reachable, encode copy instructions for the else branch result,
. Pinthe end label.

. If the code following the if-else-end is reachable, push result registers onto the value

stack.

Case 3: Both branches deemed reachable, else block missing

1.

N o g~ wN

If the end of the then branch is reachable and the branch produced results, encode copy
instructions for the then branch result, and encode the jump to the end ofthe if .

. Pinthe else label.
. Pop the input parameters previously stored for the else branch.
. If the block produces results, encode copies from those parameters to the output registers.

Pin the end label.

. Push the result registers onto the value stack.
. Set reachability to true.

Case 4: Only then deemed reachable

1.

2.

3.
4,
5.

Compute reachability of the end of the then branch.
¢ This value is already set iff the else branch has been visited.
¢ Otherwise, its the reachability of the current instruction.

If the end of the then is reachable and the block has been branched to,

encode copy instructions for the then branch result.

Pin the end label.

If the block has been branched to, push the output registers to the value stack.

Compute reachability of the code following the if-else-end , based on the reachability of
the end of the then and whether the block has been branched to.

Case 5: Only else deemed reachable

This is symmetric to the previous case, the only difference being in how the reachability of the
end of the block is computed:

106/129

br

A W N P

(o2 |

It is reachable if the current instruction is reachable, or the else has never been visited
(i.e.itisan if-end instruction).

. If the instruction is unreachable, return.

. If the branch target is the top-level frame, encode a return instruction, then return.

. Otherwise, increment the number of branches for the given frame.

. Encode copy instructions for the target branch parameters (i.e. inputs for a loop frame,

outputs otherwise).

. Resolve the target frame's label.
. Encode the branch instruction with the resolved offset.
. Set reachability to false.

br_ if

10.
11.
12.

. If the instruction is unreachable, return.
. Pop the value stack for the condition.

o If the value is zero, return.
e If it is a non-zero constant, translate the instruction as br .
» Otherwise, the value is a register, continue below.

. If the branch target is the top-level frame, encode a return _nez instruction, then return.
. Otherwise, increment the number of branches for the given frame.
. If the target frame has no branch parameters, encode a branch_nez instruction, fusing

with the previous instruction if possible.

. Do the same if the values on top of the stack are already the branch parameters of the

target branch.

. Otherwise, create a new label, say, L skip .
. Encode a branch_eqz instructionto L_skip , fusing with the previous instruction if
possible.
. Encode copy instructions for the target branch parameters.
Resolve the target frame's label.
Encode the branch instruction with the resolved offset.
Pin L_skip .

107/129

br_table

1. If the instruction is unreachable, return.
2. Pop the value stack for the branch index.
3. If the instruction only has a default target, translate it as a br to the default target.
4. If the branch index is a constant, translate the instruction as a br to the given target.
5. If the target branches do not have branch parameters, then
e Encode a branch table instruction.
e For each of the targets:
e Ifitis the top-level frame, encode return .
« Otherwise, resolve the corresponding label, bump branches to the frame and
encode a branch with the resolved offset.
» Set reachability to false.
6. Otherwise, for each unique branch target, introduce a label, say, L_i .
7. For each branch target, encode a branch to the corresponding L i .
8. Pop a number of values from the value stack equal to the number of branch parameters.
9.Foreach L i:
e If L i corresponds to the top-level frame, encode a return with the values.
e Otherwise:
e Pin L i.

« Bump the number of branches to the target frame.
« Encode copies from the values to the branch parameters.
e Encode a branch to the actual target.

10. Set reachability to false.

return

Pop the value stack the right number of types and encode a return instruction with the values.

call

1. If the instruction is unreachable, return.

108/129

2. Pop a number of values from the value stack equal to the number of parameters of the
called function.

3. Allocate a register span for the results.

4. Based on whether the function is internal or imported, encode a call * instruction with
the result registers and the function index.

5. Encode register list instructions for the parameters.

call indirect

1. If the instruction is unreachable, return.

2. Pop the index from the value stack.

3. Pop a number of values from the value stack equal to the number of parameters of the
function type of the instruction.

. Allocate a register span for the results.

.Encode a call indirect instruction with the result registers and the type index.

. Encode a call_indirect_params instruction with the index and the table index.

. Encode register list instructions for the parameters.

~N o o1 b~

return_call, return_call_indirect

These are tail-call versions of the respective call* instructions. The difference in translation is
that instead of call* they emit return_call* instructions with no results, and set reachability
to false after translation.

Parametric Instructions

drop

1. If the instruction is unreachable, return.
2. Otherwise, pop an element from the value stack.

select

1. If the instruction is unreachable, return.
2.Pop 1lhs, rhs and condition from the value stack.

109/129

3. If condition is a constant, choose the corresponding value. If it is a dynamic or
preservation register, encode a copy to a fresh dynamic register. Otherwise, just push the
register back on the value stack and return.

4.1f 1hs = rhs, push 1hs back onto the value stack and return.

5. Otherwise, encode the corresponding select instruction based on the types and whether
the value is a register or constant.

Variable Instructions

local.get

1. If the instruction is unreachable, return.
2. Push the local register onto the value stack.

local.set

1. If the instruction is unreachable, return.
2. Pop the value from the value stack.
3. If the value is the local itself, return.

4. Preserve local register: if the local register is present on the value stack, allocate a new
preservation register, and replace all occurrences of the local on the value stack by it.

5. An optimization is possible if:

e The value is not a local or preservation register;
e There is a previous instruction within the current basic block.
« If the local has to be preserved, then:

* The previous instruction has a small encoding (i.e. max N sub-instructions for
some predefined N). Preservation and the optimization together require shifting
the encoding (see below), the restriction on size bounds the translation overhead.

+ And the encoding does not use the preservation register as input.

In this case:

1. Relink the output of the previous instruction to the local variable.

110/129

2. If the local has to be preserved, insert a copy instruction from local register to
preservation register (shifting the previous instruction).

6. Otherwise, if the local has to be preserved, encode a copy instruction from local register to
preservation register.

7. Then encode a copy of the value to the local.

A note on local preservation

Preserving local registers requires replacing entries of the whole value stack, thus can be a
costly operation. For small value stack sizes, Wasmi traverses the whole value stack to check
for occurrences of the given local variable. If the value stack grows beyond a certain size
however, implementation keeps track of value stack indexes for locals (LocalrRefs data
structure). In the worst case, the operation is linear in value stack size even in this case.

local. tee

1. If the instruction is unreachable, return.
2. Perform the translation logic for local.set .
3. Push the value set back onto the value stack.

global.get

1. If the instruction is unreachable, return.

2. Otherwise, if the global is a constant with an initializer expression, evaluate the initializer.
« If the value is a numeric constant, push that on the value stack and return.
« If the value is a function reference, process itas ref.func and return.

3. Allocate a dynamic register for the result.
4. Encode a global_get instruction.

global.set

1. If the instruction is unreachable, return.
2. Pop a value from the value stack.
3. Encode a global_set* instruction, based on value.

111/129

Reference Instructions

ref.null

1. If the instruction is unreachable, return.
2. Push the null value corresponding to the reference type (function vs. external) onto the

value stack.

ref.is null

1. If the instruction is unreachable, return.

2. Pop the value stack.

3. If the value is a const, push the constant result on the value stack.
4., Otherwise, encode an i64_eq_immi16 instruction.

ref.func

1. If the instruction is unreachable, return.
2. Allocate a register for the result.
3. Encode a ref_func instruction.

Numeric Instructions

Algorithmically, translation of numeric instractions is straightforward. In the general case,
operands are popped from the value stack, a dynamic regiter is puhed for the result, and the
Wasmi instruction corresponding to the Wasm instruction and the operand types is encoded.
However, the translation algorithm also attempts several optimizations:

« Constant propagation: if all operands are constants, evaluate the instruction, and push the
result onto the value stack. Where possible, this is generalized to special cases involving
register operands, e.g. instead of encoding i32 add imm16 x 0, simply O is poushed onto
the value stack.

» Peephole optimization: replace an instruction by an equivalent one. E.g. instead of

i32_sub_immi16 x 3 ,instruction i32_add_immi16 x (-3) is encoded.

e Op-code fusion: the instructions is combined with the previous one. As a simple example,
instead of translating to i32 and ; i32 eqz ,asingle i32 and eqz instructions is

112/129

emitted.

Vector Instructions

Not supported.

Table Instructions

table.get

1. If the instruction is unreachable, return.

2. Pop the index from the value stack.

3. Allocate a new dynamic register for the result.

4. Encode a table get* instruction corresponding to the index type (immediate / register).
5. Encode a table_idx instruction with the table index.

table.set

1. If the instruction is unreachable, return.

2. Pop the index and the value from the value stack.

3. If the value is a constant, allocate a register for it in the constant space.

4. Encode a table set* instruction corresponding to the index type (immediate / register).
5. Encode a table idx instruction with the table index.

table.size

1. If the instruction is unreachable, return.
2. Allocate a new dynamic register for the result.
3. Encode a table size instruction.

table.grow

1. If the instruction is unreachable, return.

2. Pop the value and the delta from the value stack.

3. If the delta is zero, process as table.size then return.

4. If the value is a constant, allocate a register for it in the constant space.

113/129

5. Allocate a new dynamic register for the result.
6. Encode a table grow* instruction corresponding to the delta type (immediate / register).
7. Encode a table_idx instruction with the table index.

table.fill

1. If the instruction is unreachable, return.

2. Pop the destination, value and length from the value stack.

3. If the value is a constant, allocate a register for it in the constant space.

4. Encode a table fill* instruction corresponding to the destination and length type
(immediate / register).

5. Encode a table idx instruction with the table index.

table.copy

1. If the instruction is unreachable, return.

2. Pop the destination, source and length from the value stack.

3. Encode a table copy* instruction corresponding to the destination, source and length
type (immediate / register).

4. Encode a table_idx instruction with the destination table index.

5. Encode a table idx instruction with the source table index.

table.init

1. If the instruction is unreachable, return.

2. Pop the destination, source and length from the value stack.

3. Encode a table init* instruction corresponding to the destination, source and length
type (immediate / register).

4. Encode a table_idx instruction with the table index.

5. Encode a elem_idx instruction with the element index.

elem.drop

1. If the instruction is unreachable, return.
2. Encode an elem_drop instruction.

114/129

Memory Instructions

i<SIZE>. load(memarg) , f<SIZE>.load(memarg) ,
i<SIZE>. load<W>_<SIGNED>(memarg)

Where SIzZE = 32,64, N = 8,16,32, SIGNED = s,u.lmplemented by translate_load .

1. If the instruction is unreachable, return.
2. Read offset from instruction argument.
3. Reserve a fresh register result .
4. If the address argument on the stack is a constant:
e Ensure address + offset does notoverflow u32 (otherwise fail translation).
e Emit I<SIZE>LoadAt , F<SIZE>LoadAt , I<SIZE>Load<W><SIGNED>At with result
register and calculated address + offset .

5. Otherwise (i.e., address argument on stack is a register reg):
e If offset fitsinto in 16 bit:
e Emit I<SIZE>LoadOffset16 , F<SIZE>LoadOffseti16 ,
I<SIZE>Load<W><SIGNED>0ffset16 with result, reg, and offset .

e Otherwise:
e Emit I<SIZE>Load , F<SIZE>Load , I<SIZE>Load<W><SIGNED> with result and
reg .
¢ Followed by a second instruction const32 with the offset value.

All cases use fuel cost for one 1load instruction.

1<SIZE>.store(memarg) , 1<SIZE>.store<N>(memarg)

Where S1zE = 32,64, N = 8,16,32 . Implemented by translate istore .

1. If the instruction is unreachable, return.
2. Read offset from instruction argument.
3. There are four cases, depending on the nature of the top two stack elements value and
addr :
e Both addr and value are registers:
o If offset can fitinto 16 bit:

115/129

e Emit I<SIZE>StoreOffseti6(addr,offset,value) ,
I<SIZE>Store<N>0ffsetl6(addr,offset,value) .
e Otherwise:
e Emit I<SIZE>Store(addr,value) , I<SIZE>Store<N>(addr,value) .
+ Followed by a second instruction const32 with the offset value.
e addr isaregisterand value is a constant:
o If offset fitsinto 16 bit:
e If value fitsinto 16 bit:
e Emit I<SIZE>StoreOffseti6Imm(addr,offset,value)
(I<S1ZE>Store<N>0ffset16Imm(addr,offset,value)).

¢ Otherwise:
¢ Allocate a new function local constant for value on the value stack, use
its register valreg .
e Emit I<SIZE>StoreOffseti16(addr,offset,valreg)
(I<S1ZE>Store<N>0ffset16(addr,offset,valreg)).

¢ Otherwise:
+ Allocate a new function local constant for value on the value stack, use its
register valreg .
e Emit I<SIZE>Store(addr,offset) (I<SIZE>Store<N>(addr,offset)).
» Followed by a second instruction Register(valreg) to supply the value
from the constant register.

e addr isaconstantand value is a register:
e Ensure addr + offset does notoverflow u32 (otherwise fail translation).
e Emit I<SIZE>StoreAt(addr + offset, value)
(I<SIZE>Store<N>At(addr + offset, value)).

e Both addr and value are constants:
e Ensure addr + offset does notoverflow u32 (otherwise fail translation).
e If value fitsinto 16 bit:
e Emit I<SIZE>StoreAtImm(addr + offset, value)
(I<S1ZE>Store<N>AtImm(addr + offset, value)).

116/129

¢ Otherwise:
¢ Allocate a new function local constant for value on the value stack, use its
register valreg .
e Emit I<SIZE>StoreAt(addr + offset, valreg)
(I<S1ZE>Store<N>AtImm(addr + offset, valreg)).

All cases use fuel cost for one store instruction.

memory.size

1. If the instruction is unreachable, return.
2. Translate directly to MemorySize (using a fresh register for the result), adding fuel cost for

an entity instruction.

memory . grow

1. If the instruction is unreachable, return.
2. Translate directly to MemoryGrow[By](size) depending on size argument (using a fresh
register for the result), adding fuel cost for an entity instruction.

memory.init(data_index)

1. If the instruction is unreachable, return.

2. Translate directly to MemoryInit*(dst,src, len) (depending on arguments dst , src,
and len), adding fuel cost for an entity instruction.

3. Emit a DataSegmentIdx instruction.

memory . copy

1. If the instruction is unreachable, return.
2. Translate directly to MemoryCopy*(dst, src, len) (depending on arguments dst , src,
and 1len), adding fuel cost for an entity instruction.

memory.fill

1. If the instruction is unreachable, return.

1177129

2. Translate directly to MemoryFill*(dst,val, len) (depending on arguments dst , val,
and len), adding fuel cost for an entity instruction.

data.drop(data_index)

1. If the instruction is unreachable, return.
2. Translate directly to patabrop(data_index) , adding fuel cost for an entity instruction.

118/129

Appendix: unsafe Rust Checklist

There are 112 usages of the unsafe keyword in wasmi v0.36.0 that are in scope of the audit.
Below is a table that categorizes and analyses each occurrence. But first some definitions and
context are required.

The unsafe code in Wasmi often involves the management of raw pointers. Raw pointers
themselves are not inherently unsafe, and so long as they are valid, aligned correctly, and
handled correctly according to the specific safety comments then no undefined behaviour will
occur.

Validity
Validity of a pointer is best described in the the Rust documentation for
rust/library/core/src/ptr/mod.rs:

» For operations of size zero, every pointer is valid, including the null pointer.

The following points are only concerned with non-zero-sized accesses.

¢ A null pointer is never valid.

e For a pointer to be valid, it is necessary, but not always sufficient, that the pointer be
dereferenceable: the memory range of the given size starting at the pointer must all be
within the bounds of a single allocated object. Note that in Rust, every (stack-
allocated) variable is considered a separate allocated object.

¢ All accesses performed by functions in this module are non-atomic in the sense of
atomic operations used to synchronize between threads. This means it is undefined
behavior to perform two concurrent accesses to the same location from different
threads unless both accesses only read from memory. Notice that this explicitly
includes read_volatile and write_volatile: Volatile accesses cannot be used for inter-
thread synchronization.

¢ The result of casting a reference to a pointer is valid for as long as the underlying
object is live and no reference (just raw pointers) is used to access the same memory.
That is, reference and pointer accesses cannot be interleaved.

119/129

https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/ptr/fn.read_volatile.html
https://doc.rust-lang.org/std/ptr/fn.write_volatile.html

Alignment
Alignment of a pointer is best described in the rust documentation for
rust/library/core/src/ptr/mod.rs:

Valid raw pointers as defined above are not necessarily properly aligned (where “proper”
alignment is defined by the pointee type, i.e., *const T must be aligned to mem::align_of::
()). However, most functions require their arguments to be properly aligned, and will
explicitly state this requirement in their documentation. Notable exceptions to this are
read_unaligned and write_unaligned.

When a function requires proper alignment, it does so even if the access has size 0, i.e.,
even if memory is not actually touched.

Allocated Object

Above a pointer is described as being valid if the address is part of a memory range that is
considered an "allocated object". Allocated Objects are best described in the rust documentation
for rust/library/core/src/ptr/mod.rs:

An allocated object is a subset of program memory which is addressable from Rust, and
within which pointer arithmetic is possible. Examples of allocated objects include heap
allocations, stack-allocated variables, statics, and consts. The safety preconditions of some
Rust operations - such as offset and field projections (expr.field) - are defined in terms of
the allocated objects on which they operate.

An allocated object has a base address, a size, and a set of memory addresses. It is
possible for an allocated object to have zero size, but such an allocated object will still
have a base address. The base address of an allocated object is not necessarily unique.
While it is currently the case that an allocated object always has a set of memory
addresses which is fully contiguous (i.e., has no “holes”), there is no guarantee that this will
not change in the future.

Undefined Behaviour
Undefined Behaviour (UB) in Rust is any code that exhibits behaviours defined in The Rust
Reference chapter 16.2 Behavior considered undefined. Any code that triggers UB is

120/129

https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/std/ptr/fn.read_unaligned.html
https://doc.rust-lang.org/std/ptr/fn.write_unaligned.html
https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/reference/behavior-considered-undefined.html#behavior-considered-undefined

considered unsound. Safe code cannot trigger UB and so is automatically sound, while unsafe
code is considered sound only if it cannot trigger UB.

Unsafe Rust Features
Unsafe Rust allows 5 features that safe rust does not have. Here is a legend to classify them,

and another item for declaration, that will be used to categorise the type of unsafe inthe
analysis.

LEGEND:

DEREF - Dereference a raw pointer

CALL - Call an unsafe function or method

DECL - Declaration of an unsafe function or method
STATIC - Access or modify a mutable static variable
TRAIT - Implement an unsafe trait

UNION - Access fields of a union

121/129

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers

Source Type Precondition Notes
size checked to be equal, contains
= u64 bit pattern must be valid as u32 (always valid) and non-zero
ExternRef::From#L125 UNION ExternRef u32 (ExternObject type), None
for zero ("niche” value [*1][*2]).
ExternRef bit pattern must be a . . .
UntypedValue::From#L137 UNION VaTideT6f P any bit patterns is valid
Externref::canonicalize#L.168 UNION 0_u64 mustbe avalid Externref '[i]\jahd (encoding a wrapped None)
/wasmi/src/memory/buffer.rs#L37 TRAIT send for ByteBuffer type Pointer can be shared, restis send
ByteBuffer::data#L.140 CALL slice::from_raw_parts BytPfBUffer fields (ptr, €M)
consistent by construction
. S ByteBuffer fields (ptr, len)
ByteBuffer::data_mut#L149 CALL slice::from_raw_parts consistent by construction
ByteBuffer fields (ptr, len
ByteBuffer::get_vec#L167 CALL Vec: :from_raw_parts capacity) consistent by
construction
dereferences a raw pointer
/wasmi/src/memory/buffer.rs#L203 DEREF (core::ptr::addr_of_mut!) for Test code only
test
/wasmi/src/memory/buffer.rs#L209 DEREF dereferences a static mut Test code only
dereferences a raw pointer
/wasmi/src/memory/buffer.rs#L225 DEREF (core::ptr::addr_of_mut!) for Test code only
test
dereferences a raw pointer
/wasmi/src/memory/buffer.rs#L241 DEREF (core::ptr::addr_of_mut!) for Test code only
test
. ; Safe since Instructionptr safely
gvgasm|/src/eng|ne/resumable.rs#Ll TRAIT X implements sync . More
explanation in Safety comment
Reliant on guarantees from
CodeMap::get_compiled#L297 CALL Must be unreachable. translator. See
hint::unreachable_unchecked
CompiledFuncRef only has
reference to pin data. No unsafe
CodeMap::adjust_cref_lifetime#L33 CALL Data must not be moved or B methods are clalledl and the
0 invalidated. data does not have interior
mutability. As Safety comment
mentions CodeMap is append only.
See intrinsics.rs::transmute
. ; unreachable by construction. See
CodeMap::get_uncompiled#L473 CALL Must be unreachable. hint--unreachable unchecked
Saftey comment needs to be added.
Memory is initialised due to
CodeMap::compile#L627 CALL memory must be initialised result.write called on both paths
of match statement. See
MaybeUninit::assume_init
Validity must be handled at call site.
’ Not strictly required as no unsafe
) No FrameRegisters can reference directly appears in the body,
Stack::merge_call_frames#L81 DECL the drained callFrame , these perhaps Valuestack::brain
pointers will be invalid. should be unsafe although it does
not call unsafe code directly either.
Starti . d endi) No checks, DECL unsafe so must
tarting pointer and ending pointer be enforced at call site. All call sites
must be part of same allocated provide argument of
ValueStack::stack_ptr_at#L.117 CALL object. Offset in bytes cannot

overflow isize. Computing offset
cannot involve wrapping.

CallFrame: :base_offset() , SO

soundness is dependent on
callsack data. See <*mut T>:add

122/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L137
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L137
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L168
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L37
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L140
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L149
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L167
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L203
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L209
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L225
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L241
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/resumable.rs#L109
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/resumable.rs#L109
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L297
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/hint.rs#L9-L110
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L330
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L330
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/intrinsics.rs#L1092-L1382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L473
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/hint.rs#L9-L110
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L627
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/mem/maybe_uninit.rs#L583-L640
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/mod.rs#L81
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L117
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mut_ptr.rs#L921-L1006

Source Type Precondition Notes
Defaults for capacity are sound,
although it is possible config with
bad capacity, it should error in call
to reserve . new_len is within
range of capacity as reserve is
c;eWaTcliti/m Er::;unitegfslgis than called. All calls have on resize
ValueStack::extend_by#L150 CALL Olpd len. .new len must be either do_nothing or shift the
initialised - stack pointer. Values are not
' initialised in this function, instead a
slice of Maybeuninit is returned,
this has appropriate handling of
uninit values and no UB should be
possible. See Vec::set_len
The slice data is valid as the line
above ensures it is within vec
capacity. Slice data is not initialised
and is Maybeuninit , and so call
site should enforce correctness as
The slice data must be valid for mentioned above. Not clear access
reads and writes. The data must be is exclusive at this point, however
. initialised. Access to data must be the only possible accesses that
ValueStack::extend_by#L151 CALL exclusive to slice for lifetime of slice. | would violate this would be raw
len * size_of::() cannot overflow pointers. Not clear that size could
isize. not overflow, extra checks should
be added to ensure. Note: All calls
have on_resize either
do_nothing or shift the stack
pointer. See
slice::from_raw_parts_mut
new_len is in range. Assuming
new_len TUSt be less than values were already initialised,
. capacity. Elements at shortening the length is valid - other
ValueStack::drop#L177 CALL old len..new len mustbe unsafe functions responsibility
initialised. ensure they are initialised. See
Vec::set_len
. . This appears to be able to be
ValueStack::drop_return#L188 CALL index must be in bounds of slice violated, a check should be added
here. See slice::get_unchecked
If the check from above is included
. . then the validity and initialisation
The slice data must be valid for should be sound. Not clear if there
reads. The data must be initialised. ; :
Access to data must be read onl is other access and is shared read
ValueStack::drop_return#L190 CALL R Y only, these would need to occur
for other references to slice for through raw pointers though. Not
lifetime of slice. len * size_of::() | hat si d i
cannot overflow isize. clear that size could not overflow,
extra checks should be added to
ensure. See slice::from_raw_parts
new_len isinrange. Assuming
new_len must be less than values were already initialised,
. capacity. Elements at shortening the length is valid - other
ValueStack:-truncate#1.203 CALL old_len..new_len mustbe unsafe functions responsibility
initialised. ensure they are initialised. See
Vec::set_len
ptr::write : Validity and alignment
must be established by calling
ptr::write : context, function is declared unsafe.
FrameParams.range.start must <*mut T>::add : Offsetin bytes
be valid for writes, and must be cannot overflow isize as count is 1.
o properly aligned. <*mut T>::add : If
FrameParams::init_next#L.368 CALL FrameParams.range.end <= FramePar

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

is already the case, offset may point
to a different allocated object or
wrap, since function is declared
unsafe this is the responsibility of
calling context to enforce. See
ptr::write. See <*mut T>::add

123/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L150
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L151
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/raw.rs#L142-L195
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L177
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L188
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/mod.rs#L635-L673
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L190
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/raw.rs#L6-L140
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L203
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L368
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mut_ptr.rs#L921-L1006

Source Type Precondition Notes
ptr::write : Pointer alignment and
T — validity not explicitly enforced in
ptr::write : f f 7
unciton, but all call sites follow
bFramﬁ;aframs._trange.;tartt gwust ValueStack::alloc_call_frame
p?o\gl)znlly glrig\':’]re'gs'ﬁ?mtmgf_ _:‘d : which is a valid context. <*mut
“ini N ; i LIS EY- T>::add: Offset in bytes cannot
FrameParams::init_zeroes#L.378 CALL Starting pointer and ending pointer overflow isize as count is 1.
must be part of same allocated debug assert and calling context
gsg’rﬁgv?g?zeé'%gﬁei tcir?n%cfaftset enforce these predicates, but the
cannot involve Wrapr:)ingg debug assert could be added to
’ extra checks. See
FrameParams::init_next
‘ptr::read: src mustpoint to All ptr::read invariants
initialised memory. src must be (initialised, valid, aligned) are
valid for read. src must be dependent on
aligned. FrameRegisters::register_offset
) FrameRegisters::register offset | invariants being upheld, which
FrameRegisters::get#L409 CALL : (since the function is declared
count * size_of::<Untypedval>() unsafe) must be determined by call
must not overflow isize . Original site (only)
pointer and offset pointer must be Executor::get_register). See
part of same allocated object ptriread. See
without wrapping. FrameRegisters::register_offset
ptr::write : dst must be valid Al R . . lid
for writes. dst must be aligned. y pt(;' 'W”dte |n\éar|ants (valid,
FrameRegisters::register_offset aligne)are epen em.on
. FrameRegisters::register_offset
FrameRegisters::set#L419 CALL count * size_of::<Untypedval>() invariants be'r!g upheld, which
L - (since funtion is declared unsafe)
must not overflow isize . Original must be determined by call site.
pointer and offset pointer must be See pir:write. See
part of same allocated object FrameRegisters::register_offset
without wrapping.
FrameRegisters::register_offset#L4 DECL X X
24
By [C5] analysis, and given that
count is converted il6, count
maximum possible is i16: : MAX
count * size_of::<Untypedval>() ‘I’VhiCh will QOt OV‘I':‘meWdfqr 32b';gg?
i arger wordsize. If wordsize is it,
FrameRegisters::register_offset#L4 mu_st not overflow Eoze). Original then the count <= 4095 for
25 E 9 CALL pointer and offset pointer must be d Unclear that the offset
part of same allocated object soundness. Unclear that the oitse
without wrapping would be part of same allocated
’ object without wrapping, since
funciton is marked unsafe this
would need to determined by call
site "FrameRegisters::{get
CachedlInstance::as_ref#L80 DECL X X
Pointer must be aligned. Must be Must be established at call site,
CachedlInstance::as_ref#L81 CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. NonNull<T>::as_ref
CachedInstance::update_memory# DECL X %
L101
. Pointer must be aligned. Must be Must be established at call site,
(LtlaggedInstance..update_memory# CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedInstance::get_func#L115 DECL X X
Pointer must be aligned. Must be Must be established at call site,
CachedlInstance::get_func#L116 CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedInstance::get_memory#L12
6 DECL X X
. Pointer must be aligned. Must be Must be established at call site,
gachedInstance..get_memory#le CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedInstance::get_table#L137 DECL X X

124/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L378
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L409
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1286-L1436
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L419
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L424
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L424
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L80
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L81
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/non_null.rs#L332-L367
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L101
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L101
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L102
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L102
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L115
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L116
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L126
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L126
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L127
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L127
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L137

Source Type Precondition Notes
Pointer must be aligned. Must be Must be established at call site,
CachedInstance::get_table#L138 CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedlInstance::get_global#L148 DECL X X
Pointer must be aligned. Must be Must be established at call site,
CachedInstance::get_global#L149 CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedInstance::get_data_segment
#1159 DECL X X
. Pointer must be aligned. Must be Must be established at call site,
gLalcggdlnstance..get_data_segmem CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedInstance::get_element_seg
ment#L170 DECL X X
. Pointer must be aligned. Must be Must be established at call site,
g\zﬂ:glijllr}sltance..getfelememfseg CALL "dereferenceable”. Referent must function is declared unsafe. See
be initialised. CachedInstance::as_ref#81
CachedlInstance::get_func_type_de
dup#L181 DECL X X
Pointer must be aligned. Must be . .
CachedInstance::get_func_type_de " » Must be established at call site,
dup#L182 CALL bcéeirr?i{ie;ﬁgggable - Referent must function is declared unsafe.
CachedMemory::data#L.233 DECL X X
Pointer must be aligned. Must be Must be established at call site,
CachedMemory::data#L234 CALL "dereferenceable". Referent must function is declared unsafe. See
be initialised. NonNull<T>::as_ref
CachedMemory::data_mut#L243 DECL X X
Pointer must be aligned. Must be : :
CachedMemory::data_mut#L244 CALL "dereferenceable”. Referent must ;\/Iust_be established at call site,
be initialised. unction is declared unsafe.
CachedGlobal::get#L306 DECL X X
src must point to initialised Must be established at call site,
CachedGlobal::get#L.309 CALL memory. src must be valid for function is declared unsafe. See
read. src must be aligned. ptr::read
CachedGlobal::set#L318 DECL X X
: ; N Must be established at call site,
CachedGlobal::set#L.321 CALL s must be valid for writes. dst function is declared unsafe. See
must be aligned. i
ptr:write
ptr::write : The access is
ptr::iwrite : properly aligned and is valid for
writes, but it should be noted if there
bFramﬁzaframs '.tra”ge 'gtartt EUSt are constants allocated in the frame
fovih glri V\r’]:'egs'f}n tmg)s o edd . they are overwritten. <*mut T>::add:
EngineExecutor::execute_root_func CALL properly aligned. GamiSRizEkladd): Offset in bytes cannot overflow isize
#.211 Starting pointer and ending pointer as count is 1. Previous call to
mbl'.'St b%rf)fart O.f Sbame allocated ValueStack::alloc_call_frame
gvgr(f:ltc;W issi;; '%Oﬁei t(i:r?m:)cf)-ftset ensures valid range, therefore offset
e puting is in same allocated object without
cannot involve wrapping. wrapping. See
FrameParams::init_next
| staring poterand endng PO | pepencent o vy of
5ng|neExecutor..resumeﬁfunc#L27 CALL object. Offset in bytes cannot chankFrame .base offs(;etd, esxtra
overflow isize. Computing offset S/ ?C gtari_r_efonl:metn el - oee
cannot involve wrapping. aluestack:stack_ptr_a
From
FrameRegisters::register_offset
. . : count * size_of: Unclear that these invariants hold,
(IaEngmeExecutor..resumeifunc#L27 CALL () must not overflow isize'. requires extra checks. See

Original pointer and offset pointer
must be part of same allocated
object without wrapping.

FrameRegisters::set

125/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L138
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L148
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L149
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L159
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L159
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L160
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L160
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L170
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L170
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L171
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L171
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L181
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L181
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L182
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L182
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L233
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L234
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/non_null.rs#L332-L367
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L243
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L244
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L306
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L309
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1286-L1436
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L318
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L321
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L211
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L211
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L276
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L276

Source Type Precondition Notes
Starting pointer and ending pointer Dependent on validity of
must be part of same allocated
Executor::new#L119 CALL object. Offset in bytes cannot c%aelclszrgrrn: 'rgif;n*%:ﬁg; d eszt!rea
overflow isize. Computing offset - .
cannot involve wrapping. ValueStack::stack_ptr_at
Transitively calls
CachedEntity::get_* . Unclear
) Pointer must be aligned. Must be that invariants would hold, must be
Executor::get_entity!#L.882 CALL "dereferenceable”. Referent must established at call site, expanded
be initialised. functions are not labelled as unsafe,
so extra checks are recommended.
See CachedInstance::as_ref
From
FrameRegisters::register_offset | Unclear that these invariants hold,
: and it depends on the callsite of
. ; count * size of::<Untypedval>() | which there are many. This funciton
Executor::get_register#923 CALL must not overflow isize . Original should be declared as unsafe or
pointer and offset pointer must be there should be extra checks
part of same allocated object enabled. See FrameRegisters::get
without wrapping.
From . .
FrameRegisters::register_offset gﬁé:lﬁ%reﬁgéégegﬁ;ﬁgigelllgit;h(gld'
. * o ..
B) : count * size_of:: TN which there are many. This function
Executor::set_register#L.941 CALL () must not overflow isize. should be declared as unsafe or
Original pointer and offset pointer there shoul dbe extra checks
must be part of same allocated enabled. See FrameRegisters::set
object without wrapping.
Starting pointer and ending pointer Dependent on validity of
. ; must be part of same allocated
g;ecutor..framefstackfptrflmpl#w CALL object. Offset in bytes cannot (;]auk”ame) base*Offsgtd’ ?ana
overflow isize. Computing offset % ?C ;tarirletcorﬂm?n et - oee
cannot involve wrapping. aluestack:stack_pur_a
Must be established at call site,
. Pointer must be aligned. Must be however it the function isn't marked
5xecutor..executefloadfextend#LB CALL "dereferenceable". Referent must as unsafe, extra checks should be
be initialised. added to ensure the invariants are
upheld.
Starting pointer and ending pointer Dependent on validity of
i ; must be part of same allocated CallFrame.base_offset , extra
E;gzutor..d|spatchfcomp|led7func# CALL object. Offset in bytes cannot checks are recommended. Part of a
overflow isize. Computing offset closure. See
cannot involve wrapping. ValueStack::stack_ptr_at
Executor::copy_regs soundness
depends on call site, which is
always the call site of
Executor::copy_call_params
which takes
uninit_params:FrameParams as
ptr::write : argument. In particular is the
FrameParams.range.start must responsibility of the call site to
be valid for writes, and must be allocate enough range for all calls
properly aligned. <*mut T>::add : Executor: :copy_reg to be sound.
Executor::copy_regs#L272 CALL Starting pointer and ending pointer Two calls to
must be part of same allocated Executor::copy_call_params
object. Offset in bytes cannot exist, one preceeded by
overflow isize. Computing offset valueStack: :extend_by , the other
cannot involve wrapping. by
ValueStack::alloc_call_frame , it
is not clear that these allocate
enough range and extra checks
should be added. ptr::write :
<*mut T>::add : See
FrameParams::init_next
Not clear that the callFrame on
No F Redist . the head of the stack cannot have
. " 0 FrameRegisters can reference dangling pointers to it. This would
Executor::prepare_compiled_func_c CALL the drained callFranme , these depend on the context of the call

all#L317

pointers will be invalid.

site, if possible extra checks should
be added. See
Stack::merge_call_frames

126/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L119
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L882
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L923
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L941
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L993
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L993
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/load.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/load.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L224
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L224
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L317
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L317

Source Type Precondition Notes
Starting pointer and ending pointer Dependent on validity of
must be part of same allocated
Executor::execute_host_func#L508 | CALL object. Offset in bytes cannot c%ilclklzsrgrrn; 'rgzz(in*%:ﬁg; d eg:;a
overflow isize. Computing offset - .
cannot involve wrapping. ValueStack::stack_ptr_at
From
FrameRegisters::register_offset
: count * size_of: Unclear that these invariants hold,
Executor::execute_host_func#L534 CALL () must not overflow isize". requires extra checks. See
Original pointer and offset pointer FrameRegisters::set
must be part of same allocated
object without wrapping.
Starting pointer and ending pointer ;i
must be part of same allocated Dcependent on validity of
. . . allFrame.base_offset , extra
Executor::return_caller_results#L77 CALL object. Offset in bytes cannot checks are recommended. See
overflow isize. Computing offset Valuestack:: K .
cannot involve wrapping. alueStack::stack_ptr_at
From
FrameRegisters::register_offset
. : count * size_of: Unclear that these invariants hold,
E;ecutor..executefreturnfvalue#Ll CALL () must not overflow isize". requires extra checks. See
Original pointer and offset pointer FrameRegisters::set
must be part of same allocated
object without wrapping.
From
FrameRegisters::register_offset
. . : count * size_of: Unclear that these invariants hold,
Eléelz_cl%tgr..execule_return_reg_n_m CALL () must not overflow isize". requires extra checks. See
Original pointer and offset pointer FrameRegisters::set
must be part of same allocated
object without wrapping.
From
FrameRegisters::register_offset
. : count * size_of: Unclear that these invariants hold,
E;ecutor..execute_return_span#LZ CALL () must not overflow isize". requires extra checks. See
Original pointer and offset pointer FrameRegisters::set
must be part of same allocated
object without wrapping.
From
FrameRegisters::register_offset
. . : count * size_of: Unclear that these invariants hold,
Eﬁggtor..execut_return_many_mpl CALL () must not overflow isize". requires extra checks. See
Original pointer and offset pointer FrameRegisters::set
must be part of same allocated
object without wrapping.
Unclear that these invariants hold,
src must point to initialised th'St be ?Stat:."Sh?d att%all 'fited
Executor::execute_global_get#L16 CALL memory. src must be valid for ug\évaef\éerlfgt?; L%r:az;skggreec are
read. src must be aligned. recommended. See
CachedGlobal::get
Unclear that these invariants hold,
)) . must be established at call site
Executor::execute_global_set_impl# CALL dst must be valid for writes. dst however function is not declared
L72 must be aligned. unsafe. Extra checks are
recommended. See
CachedGlobal::set
Unclear that these invariants hold,
] . must be established at call site
. Pointer must be a}.l'gned' Must be however function is not declared
Executor::execute_store_wrap#L55 CALL dereferenceable”. Referent must unsafe. Extra checks are
be initialised. recommended. See
CachedMemory::data_mut
Unclear that these invariants hold, it
] . must be established at call site
N . Pointer must be aligned. Must be o
Executor::execute_memory_grow_i CALL "dereferenceable”. Referent must however function is not declared

mpl#L90

be initialised.

unsafe. Extra checks are
recommended. See
CachedInstance::update_memory

1277129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L508
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L534
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L77
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L107
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L107
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L152
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L152
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L202
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L202
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L232
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L232
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L72
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L72
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/store.rs#L55
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L90
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L90

Source Type Precondition Notes
Unclear that these invariants hold,
] . must be established at call site
Executor::execute_memory_copy_i | «aj| %%?é?ég#gé ;E[ﬁ (fu"%ff‘é} e"f#?:]g; however function is not declared
mpl#L234 be initialised. unsafe. Extra checks are
recommended. See
CachedMemory::data_mut
Unclegr that tt?l‘eshe (ijnvariaﬁnts hold,
" : must be established at call site
Executor::execute_memory_fill_impl CALL %%pet?errgﬁgég& g'%‘;&é‘fﬁ%g& however function is not declared
#L381 be initialised. unsafe. Extra checks are
recommended. See
CachedMemory::data_mut
Unclegr that tt?lesﬁe :jnvarialrlns hold,
. : must be established at call site
Executor::execute_memory_init_im CALL %%Pé?ég#gé:ﬁSl'gé';g}gﬁggset howefver functic|>1n isknot declared
pl#L530 P : unsafe. Extra checks are
be initialised. recommended. See
CachedMemory::data_mut
/wasmi/src/engine/bytecode/instr_pt TRAIT X Read only on Send data
r.rs#L18
I bound g " Safety clomment doesdn%t mention
; . ptr always in bounds and ptr + offset | potential to wrap i32, debug_assert
InstructionPir:-offset#.39 CALL <=i32:MAX can be added to enforce bound.
See <*const T>::offset
Starting pointer and ending pointer
must be part of same allocated
InstructionPtr::add#L47 CALL object. Offset in bytes cannot As above. See <*const T>::add
overflow isize. Computing offset
cannot involve wrapping.
InstructionPtr::get#L62 DEREF X ssr?éi% (t:)%n;rgfznt asserts deref
; : : ; Correct by PhantomData containing
g/ggfggll_slrggengne/bytecodehmmem CALL Value must be non-zero non-zero type. See
: NonZero::new_unchecked
: h ' » Correct by PhantomData containing
glgg?g;ﬁsiggeng|ne/bytecode/|mmed| CALL Value must be non-zero non-zero type. See
: NonZero::new_unchecked
. : ; . Correct by PhantomData containing
/avtv:?;rgll_slrggenglne/bytecode/lmmedl CALL Value must be non-zero non-zero type. See
: NonZero::new_unchecked
: : : : Correct by PhantomData containing
gxglgfgll_slrggengne/bytecode/|mmed| CALL Value must be non-zero non-zero type. See
. NonZero::new_unchecked
. input bytecode must be valid and only used for benchmark tests, see
Module::new_unchecked#L256 DECL consistent with config benches.rs
Module::new_unchecked#L.258 CALL see parse_buffered_unchecked
Module::new_streaming_unchecked input bytecode stream must be valid s
#1281 DECL and consistent with config never called within codebase
#l;/ILodeUGIe::new_streammg_unchecked CALL see parse_streaming_unchecked
CustomSectionsiter::next#L125 CALL str::from_utf8_unchecked gﬁiﬁ% ;g'g?g:qt)argg?ngyé’?or o
Module::parse_streaming#L79 CALL 32%\;%2l:)lre(;:vpi)g‘resdeﬁggﬁg@g}lgilmpl,
Module::parse_streaming_uncheck DECL input bytecode stream must be valid
ed and consistent with config
Module::parse_streaming_uncheck CALL see Module::parse_streaming_impl
ed#L95
either input bytecode stream is
Module::parse_streaming_impl DECL valid/consistent with config, or
validator is provided
Module::parse_buffered#L24 CALL see Module:parse_buffered_impl,

validator provided before call

128/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L234
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L234
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L381
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L381
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L530
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L530
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L18
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L18
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L39
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/ptr/const_ptr.rs#L349-L430
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L47
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/ptr/const_ptr.rs#L837-L922
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L62
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L130
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L130
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L138
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L138
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L146
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L146
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L154
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L154
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L257
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/benches/benches.rs
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L259
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L282
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L282
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L287
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L287
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/custom_section.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L79
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L94
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L94
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L95
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L95
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L114
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L24

Source Type Precondition Notes
. input bytecode must be valid and
Module::parse_buffered_unchecked DECL consistent with config
Q/ILTOule::parse_buffered_unchecked CALL see Module::parse_buffered_impl
either input bytecode is
Module::parse_buffered_impl DECL valid/consistent with config, or
validator is provided
size checked to be equal, contains
. u64 bit pattern must be valid as u32 (always valid) and non-zero
FuncRef:From#L.43 UNION RefType us2 (Func type), None forzero
("niche" value [*1][*2]).
FuncRef bi i
UntypedVal::From#L55 UNION Lo bit pattern mustbe avalid | . i batterns s valid
FuncRef::canonicalize#L78 UNION 0 _us4 must be avalid Funcref i[iﬁa"d (encoding a wrapped None)
. transmute sa str to wrapper wrapper struct declared
LenOrderStr::From#L172 CALL struct repr(transparent)
[collections/src/arena/mod.rs#L.38 TRAIT send for Arena allocation data Safe if contained T is send
Safe if contained T is sync . lItis
[collections/src/arena/mod.rs#L41 TRAIT sync for Arena allocation data however declared send instead
(reported).
[collections/src/arena/component_v Send for Componentvec vector . . .
ec.rs#L16 TRAIT type Safe if contained T is sync
[collections/src/arena/component_v sync for Componentvec vector . . .
ec.rs#L19 TRAIT type Safe if contained T is sync
Jwasmi/benches/benches.rs#L 189 CALL bytecode input must be valid and only called on known bytecode in

consistent with config

repository

[*1] https://github.com/rust-lang/rust/pull/60300

[*2] https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche

129/129

https://github.com/rust-lang/rust/pull/60300
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L40
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L40
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L59
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L44
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L44
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L56
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L56
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L79
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/string_interner/detail.rs#L172
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/string_interner/detail.rs#L172
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L42
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L19
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L19
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/benches/benches.rs#L190

