
Security Audit Report

Wasmi - WebAssembly (Wasm)
Interpreter Stellar

Delivered: November 27, 2024

Prepared for Stellar Network by

1/129

2/129

https://runtimeverification.com/
https://runtimeverification.com/

Table of Contents
Disclaimer
Executive Summary
Goal
Scope
Methodology
Platform Logic and Features Description
Code Review Discussion and Findings

[C1] CompiledFuncEntity can take more than u32::MAX entries
[C2] Inconsistencies in RegisterAlloc Bounds
[C3] Underestimated Fuel Consumption of Table and Memory Instructions
[C4] Large inputs to raw pointer functions may cause undefined behaviour depending
on target
[CI1] Best Practices and Notable Particularities
[CI2] Results of cargo-audit
[CI3] visit_input_registers does not visit all registers of a RegisterSpan
[CI4] Missing copy in select translation
Suggested Executor Assertions
Translation Output Validation

Fuzzing Discussion and Findings
[F1] Abort on realloc() due to faulty br_table optimization
[F2] Translator debug assertion fired due to ref.is_null constant propagation
[F3] Segmentation fault due to visit_input_regs bug
[F4] Output mismatch between Wasmi and Wasmtime #1
[F5] Output mismatch between Wasmi and Wasmtime #2
[F6] Output mismatch between Wasmi and Wasmtime #3
[F7] Executor hang on unreleased version due to copy_span bug
[F8] Executor panic on unreleased version due to br_table_many bug

Appendix
Appendix: Wasmi Instruction Set Overview
Appendix: Engine Class Diagrams

3/129

Appendix: FuncTranslator Class Diagrams
Appendix: Translation Sequence Diagrams
Appendix: Algorithmic Description of the Translator

Control Instructions
Parametric Instructions
Variable Instructions
Reference Instructions
Numeric Instructions
Vector Instructions
Table Instructions
Memory Instructions

Appendix: unsafe Rust Checklist

4/129

Disclaimer
This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided by you or is otherwise publicly
available, there are likely additional unknown risks which otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of
this system. This report is for informational purposes only and is provided on an "as-is" basis
and you acknowledge and agree that you are making use of this report and the information
contained herein at your own risk. The preparers of this report make no representations or
warranties of any kind, either express or implied, regarding the information in or the use of this
report and shall not be liable to you or any third parties for any acts or omissions undertaken by
you or any third parties based on the information contained herein.

Blockchain technology is still a nascent software arena, and any related implementation and
public offering carries substantial risk.

Finally, the possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large quantity
of funds.

5/129

Executive Summary
Stellar Network engaged Runtime Verification Inc. to conduct a security audit of the Wasmi
interpreter, which Wasmi Labs is custodian of. The objective was to review the logic and
implementation of critical components of the interpreter and identify any issues that could cause
erroneous or undefined behavior that may lead to exploitation or malicious interaction with the
Stellar network.

The audit was conducted over the course of 8 calendar weeks (August 21, 2024, through
October 16, 2024) and focused primarily on analyzing the executor and translator crates of the
interpreter, as well as the abstract relationship between Wasm and Wasmi. Given the large
volume and high complexity of code comprising the interpreter, a unique approach was taken to
the audit that would result in highest guarantees possible for the allocated time frame. The audit
would have two surfaces of analysis, a best effort code review approaching components in
order of priority, and dedicated fuzzing using a variety of fuzzers and configurations.

The Wasmi codebase is in excellent shape: Code is generally well-organized, adheres to Rust
best practices and contains informative doc comments in various places, as well as
explanations for particular invariants which may be unobvious.

The audit led to identifying issues of potential severity for the protocol’s health, which have been
identified as follows:

Errors in exceeding bounds: CompiledFuncEntity can take more than u32::MAX entries,
Inconsistencies in RegisterAlloc Bounds, Large inputs to raw pointer functions may
cause undefined behaviour depending on target
An error in fuel computation: Underestimated Fuel Consumption of Table and Memory
Instructions
Differences between Wasmi's execution and other WebAssembly interpreters:

Output mismatch between Wasmi and Wasmtime #1
Output mismatch between Wasmi and Wasmtime #2
Output mismatch between Wasmi and Wasmtime #3

A crash due to a bug in instruction optimizations: Abort on realloc() due to faulty
br_table optimization

6/129

https://stellar.org/
https://runtimeverification.com/
https://github.com/wasmi-labs/

A failed assertion due to a translation optimization: Translator debug assertion fired due to
ref.is_null constant propagation

A segmentation fault due to a missed case in a visitor: Segmentation fault due to
visit_input_regs bug

A hang due to faulty logic in an instructions execution: Executor hang on unreleased
version due to copy_span bug
A crash due to a miscalculated branch table offset: Executor panic on unreleased version
due to br_table_many bug

In addition, several informative findings, contributions, and general recommendations also have
been made, including:

Improvements in Best Practices and Notable Particularities
Results of cargo-audit , an automatic dependency analysis
Documenting a shortfall of a helper function: visit_input_registers does not visit all
registers of a RegisterSpan
A potentially unsound optimization in translation: Missing copy in select translation
Suggestions involving validation post translation: Suggested Executor Assertions,
Translation Output Validation
Open Source Contributions

Additionally, the document contains a high-level description of Wasmi's design:

An overview of the Wasmi translation and execution process: Platform Logic and Features
Description
Appendices to complement the description:

A reference of the Wasmi instruction set: Appendix: Wasmi Instruction Set Overview
Diagrams that visualize the translation process: Appendix: Translation Sequence
Diagrams
Diagrams that visualize the data structures used for translation and execution:
Appendix: Engine Class Diagrams, Appendix: FuncTranslator Class Diagrams
A detailed description of the translation process: Appendix: Algorithmic Description of
the Translator

At the time of writing, all crashes and output differences have been fixed both in Wasmi's main
line as well as in a branch of v0.36.* versions. The potential errors in exceeding bounds and

7/129

https://github.com/runtimeverification/_audits_wasmi-labs_wasmi/issues/43

the fuel miscalculation have been acknowledged but not addressed. Informative findings and
suggestions have been acknowledged and partially addressed in Wasmi's main line.

8/129

Goal
Given the large volume and high complexity of code comprising the interpreter, Runtime
Verification Inc. and Stellar Network agreed on an approach to the audit that would maximize
the coverage and quality of analysis performed in the allocated time for the audit. Unfortunately
total analysis of such a large and complicated code base would be impossible to achieve in the
allocated 8 weeks. Furthermore, the on-going work on the interpreter means there is potential
that updates could occur in the future, leaving the value of the analysis locked to a particular
version eventually only used for legacy versions of Stellar. Therefore, the approach that would
be taken was one of both dynamic analysis with fuzzing and simultaneous code review, with an
additional eye towards possible future developments of both Stellar and Wasmi. To elaborate on
these branches:

1. Dynamic Analysis focused on fuzzing the translator and executor with structured bytecode,
utilizing a variety of fuzzing tools both standard and custom to effectively detect possible
crashes, identify mismatches with other Wasm implementations, and reveal possible DoS
vectors.

2. Code Review for the duration of the audit would prioritize recently added logic to the target
of the audit (v0.36.0) as there is likely to be more chance of finding errors in newer code.
Furthermore, code that had high amounts of unsafe usage would be prioritized, followed
by code that has high complexity. This meant that focus would be first directed to the
executor, then the translator module, with any remaining code being reviewed should time
allow;

The audit focuses on identifying issues in the interpreter’s logic and implementation that could
potentially create erroneous or undefined behavior and therefore render Stellar network
vulnerable to attacks or cause it to malfunction. Furthermore, the audit highlights informative
findings that could be used to improve the safety, efficiency, or readability of the implementation.

9/129

https://github.com/wasmi-labs/wasmi/releases/tag/v0.36.0

Scope
The scope of the audit is limited to the code contained in a public Github repository provided by
the client (wasmi-labs/wasmi). The version that is the target of the audit is tagged release
v0.36.0 which has commit hash 02621ad7a7f769dc97524075a693cc96e2049cb5 .

Within the repository are multiple crates and files, some of which are highlighted as in the scope
of the audit. The repository and relevant crates and files are described below:

crates/

cli/ : entrypoint for fuzzing and code inspection
collections/ : helper data structures
core/ : foundational data and error types for Wasmi execution and translation
wasmi/

engine/

bytecode : Wasmi instruction set
executor : Wasmi execution implementation
translator/ : translation from Wasm to Wasmi

fuzz/ : fuzz testing harness

The comments provided in the code, a general description of the project, including samples of
tests used for interacting with the platform, and online documentation provided by the client
were used as reference material.

The audit's focus is the translation of Wasm to Wasmi bytecode and the execution of Wasmi
bytecode, in the engine directory of the wasmi crate. It is limited in scope to the artifacts listed
above.

Commits addressing the findings presented in this report (with versions 0.36.1-5) have also
been analyzed to ensure the resolution of potential issues.

10/129

https://github.com/wasmi-labs/wasmi/
https://github.com/wasmi-labs/wasmi/releases/tag/v0.36.0
https://github.com/wasmi-labs/wasmi/commit/02621ad7a7f769dc97524075a693cc96e2049cb5
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine

Methodology
As mentioned in section Goal, this audit will have two parallel streams of analysis running: code
review, and dynamic analysis through fuzzing. The methodology for each will be described
separately.
Findings will be classified according to the Runtime Verification Audit Methodology.

Code Review
It should be restated that manual code review cannot guarantee to find all possible security
vulnerabilities as mentioned in Disclaimer, however we have followed the approaches described
below to make our audit as thorough as possible.

First, we rigorously reasoned about the intention and design logic of the code, seeking to
understand the intention of the Wasmi interpreter design choices, to evaluate if the current
implementation is susceptible to security-critical design flaws and to ensure the absence of
loopholes in the design logic. To this end, we first carefully analysed the specification of Wasm
and understood it's relation to Wasmi, seeking to understand the proposed features of Wasmi
and the differences and similarities between the two (details of which are located in Platform
Logic and Features Description). We also created design documents and artefacts that we
communicated with the client to ensure that our mental model of the design and implementation
is accurate.

Second we began review of the Wasmi v0.36.0 source code, focusing on the engine and
translator crates that perform the translation from Wasm to Wasmi before execution. The review
aimed to ensure that the intended features of Wasmi are indeed implemented error free, and
that unintended extra behaviors which may be exploitable are not implemented. Wasmi
translation performs optimization of Wasm bytecode, such as constant propagation, or op-code
fusion. As part of our analysis we documented the translation from Wasm to Wasmi and
produced the first specification of Wasmi external to the source code.

Another priority that concerns the Stellar Network is that v0.36.0 introduces many instances of
unsafe code in the upgraded executor crate. Usage of unsafe may present a higher risk of

error, since the compiler will relax its guarantees of safety in order to provide the extra features
unavailable in safe code. The canonical way to determine safety for unsafe usage is to
understand the invariants that must be upheld by the usage (often listed in the data structures
documentation), and to provide a safety comment that details how the calling / contextual code

11/129

https://runtimeverification.com/smartcontract-analysis

is upholding that invariant. As part of our analysis we inspected each usage of unsafe and
endeavour to ensure the invariants are upheld and that the safety comment communicates that
accurately.

Fuzzing
To augment our code review, we additionally ran a fuzzing campaign - feeding a barrage of
random inputs to the program-under-test as a means to dynamically identify vulnerabilities
which might be overlooked by manual review alone. This campaign primarily focused on Wasmi
v0.36.0, but eventually switched to the v0.36.x-dev branch to avoid re-encountering the same
issues after they were identified and patched. At times, we discovered "shallow" bugs or
crashes which prevented the fuzzer from reaching deeper code paths, and we switched to
fuzzing the current Wasmi main in the interim until these issues were patched.

We began our fuzzing campaign by identifying testable properties that are expected to hold
across all inputs. With Wasmi, later stages of the translation and execution pipeline make
implicit assumptions about the correctness of earlier stages (see Translation Output Validation).
The resulting interconnectedness makes it difficult to isolate smaller sub-components and their
associated invariants, particularly given the scope of the audit relative to the size of the code
base. Moreover, fuzzing is a randomized process which benefits from a large number of
iterations, so given finite time and compute power, there's a trade-off between the total number
of tested properties versus the amount of resources dedicated to testing each one individually.

For all these reasons, we decided the most effective approach was to focus our efforts and
resources on a narrowly selected set of end-to-end invariants of the entire interpretation
pipeline. This allows these properties to be very thoroughly tested, and the end-to-end nature
ensures all components are still covered while increasing the likelihood of identifying
vulnerabilities caused exactly by the aforementioned interconnectedness.

To accomplish this end-to-end testing, we generated random Wasm modules, then translated
and executed each exported function with randomly generated arguments. We verified memory
safety and crash-freedom by running this process with sanitizer instrumentation and debug
assertions enabled, and verified functional correctness through differential fuzzing which tests
conformance against another established Wasm implementation (wasmtime). Further details
are given in Fuzzing Discussion and Findings.

We also gave equal care to how these random inputs are generated, ensuring that our
properties are tested against a diversity of inputs adequately covering edge cases. At a high-

12/129

https://github.com/bytecodealliance/wasmtime

level, most fuzzers proceed in the same way: generating random inputs, running them and
gathering feedback, then using this feedback to inform the generation of new inputs. However,
the particulars of this process varies greatly between tools - using different metrics to decide
which inputs are interesting, different mutation strategies to produce new inputs, etc. - making it
important to consider multiple options.

Among prominent fuzzers, standard benchmarking such as FuzzBench consistently shows two
top contenders for general-purpose fuzzing effectiveness: AFL++ and honggfuzz. We did initial
exploratory runs with both of these top choices, using afl.rs and honggfuzz-rs to integrate with
the Rust code. For our particular targets, we found that both achieved similar levels of
effectiveness, but honggfuzz scaled better across cores out-of-the-box without the need to
optimally configure advanced aspects of AFL++. Additionally, honggfuzz can take advantage of
more information sources directly from the hardware, allowing faster iteration time by avoiding
instrumentation when desired, as well as providing a base for the custom execution-time based
fuzzing we describe later.

Honggfuzz is structure-unaware, meaning that it generates inputs which are simply raw byte
sequences, and the test code itself is responsibility for converting that &[u8] seed into more
structured data. Care must be taken to ensure that this interacts well with the employed
mutation strategies - that small mutations of the input seed produce small changes in the
structured data. For generating Wasm modules, this functionality is already offered by the
wasm-smith crate, with configuration to enable or disable various Wasm features. To focus on
vulnerabilities relevant to Soroban, we extended wasm-smith's configuration with an option to
disable the generation of floating-point instructions and types, and this was later merged into
wasm-smith v0.218.0.

With a basic harness set up, our strategy was then to continually refine these harnesses by
repeating the following steps:

1. Start the fuzzer on the given harness, leaving it running continuously in the background.
2. While that long-running harness makes progress, repeatedly

1. Inspect any code coverage and performance information.
2. Based on the collected information, tweak the configuration or test code.
3. Do a shorter fuzzing run to explore if the changes were beneficial, deciding whether

they should be kept or reverted.

13/129

https://github.com/google/fuzzbench
https://github.com/AFLplusplus/AFLplusplus
https://github.com/google/honggfuzz
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/honggfuzz-rs
https://aflplus.plus/docs/power_schedules/
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith

3. Once the long running harness fails to find any new interesting inputs over a large span of
time, or if a significantly better configuration is found, switch the long-running harness to the
new configuration.

This process ensures that our compute resources are fully utilized for the duration of the audit,
enabling us to collectively perform a very large number of iterations, while still doing the
exploratory work needed to achieve a high-level of effectiveness.

14/129

Platform Logic and Features Description
Wasmi is an efficient and lightweight WebAssembly interpreter with a focus on constrained and
embedded systems. It relies on translating the stack-based Wasm bytecode to Wasmi's internal,
register-based instruction set. Conceptually, the Wasmi processing pipeline thus consists of the
following steps:

1. Compilation. Parsing the Wasm bytecode, validating the parsed module, and translating
the parsed module into Wasmi's internal representation.

2. Execution. Interpreting a function compiled to Wasmi.

Compilation

During compilation, a Wasm module, represented as bytecode, is parsed, validated and
translated into Wasmi's internal data structure for representing programs, called a code map
(see CodeMap in Appendix: Engine Class Diagrams) that the execution phase interprets.
Parsing and validation relies on the external wasmparser-nostd crate, a fork of wasmparser .

Module compilation has the following steps:

1. Processing the module header.
2. Processing functions.
3. Processing the data section.

Module header and data section processing include parsing and validating the input payload by
payload, then storing the processed data. In addition to validation as defined by the Wasm
specification, Wasmi also enforces structural limits defined in its configuration, e.g. on the
maximal number of global variables (see Config in Appendix: Engine Class Diagrams).

This is always done eagerly, i.e. when compiling a given module. However, Wasmi provides
different compilation modes that enable processing functions lazily:

1. Eager. All functions are parsed, validated and translated eagerly.
2. Lazy translation. All functions are parsed and validated eagerly, but translated lazily on

first use.
3. Lazy. All functions are parsed, validated and translated lazily on first use.

15/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs
https://docs.rs/wasmparser-nostd/latest/wasmparser_nostd/
https://docs.rs/wasmparser/latest/wasmparser/
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L153-L168

Additionally, function validation may be skipped altogether in all compilation modes. The module
parsing, validation and translation process is shown in detail (for the eager setting) in Appendix:
Translation Sequence Diagrams.

During compilation, the code map is populated with FuncEntity instances. In eager mode,
functions are translated into CompiledFuncEntity instances. Such an object stores all data,
necessary to execute the given function, in particular, a sequence of Wasmi instructions. In lazy
and lazy translation modes, a function is represented as an UncompiledFuncEntity that stores
the byte code and the module header that enable translating (and optionally, validating) the
function on-demand.

Translation Algorithm

Translation transforms a stack-based Wasm program into a register-based Wasmi program.

The function translator is implemented as a visitor over wasmparser 's instruction AST (i.e.
implements the VisitOperator trait) that is invoked when an instruction is parsed. Hence
translation is tightly coupled with the parsing process (as is validation). Throughout the
translation process, several compiler optimizations are applied, e.g. constant propagation,
peephole optimization, dead code elimination, and opcode fusion. After linearly processing each
instruction, a finalization step is performed that resolves labels and consolidates the register
space.

For a per-instruction description of the translation process, see Appendix: Algorithmic
Description of the Translator.

Data structures used in the translation process are depicted in Appendix: FuncTranslator
Class Diagrams.

Example

We're going to demonstrate the translation process on a simple example. Consider the following
Wasm function:

func (param i32) (result i32)func (param i32) (result i32)
 local.get 0local.get 0
 if (result i32)if (result i32)
 i32.const 1i32.const 1
 elseelse
 i32.const 2i32.const 2
 endend
 returnreturn
endend

16/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L398-L413
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/mod.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit.rs

When translating this function, as an initialization step, a new control frame for the function body
is pushed onto the control stack (see ControlFrame and ControlStack in Appendix:
FuncTranslator Class Diagrams) that tracks information about the current control structure.

For example, a new symbolic label, say, L0 , is created and stored in the control frame to
represent the jump location at the end of the function. Since the concrete address is not yet
known, it will be resolved later when visiting the corresponding end instruction (and in some
cases during the finalization step).

Next local.get 0 is processed, and a new tagged provider (wrapping the register storing the
value for local 0, say, R0) is pushed onto the value stack (see TaggedProvider and
ValueStack in Appendix: FuncTranslator Class Diagrams).

Next, if i32 is processed, and a new control frame is pushed which tracks the if with,
among other things, labels for the end of the if-else block and the start of the else branch
(say, L1 and L2 , respectively). Since the if produces an i32 value, a new register, R1 , is
allocated to hold the result of the control structure. At the same time, the provider is consumed
from the stack, and the first (albeit incomplete) instruction is generated using the instruction
encoder (see InstrEncoder in Appendix: FuncTranslator Class Diagrams):
branch_i32_eq_imm R0 0 L2

encoding that, if register R0 is 0 , then jump to the (yet unknown) destination L2 (the else
branch), otherwise continue with the next instruction (the then branch).

Next, i32.const 1 is processed, which pushes the constant value 1 onto the value stack.

Next, else is processed, which marks (1) the end of the then branch (2) the start of the
else branch. Accordingly, the value stack is popped and pushed, and label L2 is pinned.

Also, 1 is popped from the value stack, and two new instructions are generated:
copy_imm32 R1 1
branch L1

which writes the if -result into R1 , then jumps after the if-else block.

Next, i32.const 2 is processed, which pushes the constant value 2 onto the value stack.

Next, end is processed, which marks the end of the if-else block. Accordingly, the control
stack is popped, and L1 is pinned. Also, 2 is popped from the value stack and R1 is pushed
onto it to produce the result of the if-else block, and a new instruction is generated:
copy_imm32 R1 2

17/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/control_frame.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/control_stack.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/provider.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/mod.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs

which writes the else -result into R1 .

Next, return is processed, which simply pops the value stack and generates
return_reg R1

Finally, end is processed, which marks the end of the function body, and the control stack is
popped.

The following finalization step then resolves labels and jump offsets in instructions, thus the final
Wasmi program is
branch_i32_eq_imm R0 0 3
copy_imm32 R1 1
branch 2
copy_imm32 R1 2
return_reg R1

Execution

Wasmi execution is relatively straightforward. For each function call, a call frame is pushed onto
the call stack, and function local constants, function arguments, and function locals are
allocated and initialized on the value stack, the execution-time equivalent of the class with the
same name used for translation (see EngineStacks in Appendix: Engine Class Diagrams).
The instructions stored in the code map are then interpreted, mutating the call and value stacks.

Continuing the example above, let's assume that the translated function has been called with an
i32 argument arg .

The function body instructions and their addresses are

Address Wasmi-Instruction
------- ------------------------
i branch_i32_eq_imm R0 0 3
i+1 copy_imm32 R1 1
i+2 branch 2
i+3 copy_imm32 R1 2
i+4 return_reg R1

A CallFrame has been added to the call stack. It indicates where in the caller's register
slots the single i32 result should be written (R3 for the sake of an example), and
contains the instruction pointer of the code to execute (starting at address i), as well as
offsets into the value stack;

A "value frame" of size 2 has been added to the value stack. It contains the single i32
argument arg in register slot R0 , and an additional register slot R1 to use in the function

18/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/calls.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs

body (initialised with 0).

Both frame offset and base offset pointers in the CallFrame point to the register slot R0 .
If the function was using constants, they would be allocated before this slot (accessed with
negative register numbers), and the frame pointer would point to the first constant.

 |---------------------- CallFrame -----------------------|
 ... | InstrPtr | frame_offset | base_offset | results | flag |
-------------------------|--------- |------------- |------------ |-------- |----- |
...prior call stack... | i | * | * | R3 |false |
 / /
 ---------- /
 / -----------------------
 |/
 |
 V
 ... | R3 | ... | R0 | R1 |
------------------------------|-----|-----|
 ...prior value stack... | arg | 0 |

Execution:

Execution starts by reading the instruction at address i , which is branch_i32_eq_imm .
This compound (fused) instruction compares the arg in register slot R0 to the immediate
value 0 and performs a branch if the result is true .
If the two values are equal (i.e., result 1 for true), the instruction pointer will be
incremented by 3 , and i+3 is the next instruction.

This instruction copy_imm32 will write 2 into the register slot R1 . The value stack is
then ...| arg | 2 |
i+4 is the next instruction

If the values are not equal (i.e., result 0 for false), the branch is not taken, i+1 is the
next instruction.

copy_imm32 will write 1 into the register slot R1 . The value stack after this is
...| arg | 1 |

The next instruction branch increments the instruction pointer by 2 , and i+4 is the
next instruction.

The return_reg in i+4 performs a function return with the value from R1
the value in R1 (either 1 or 2) is written to the target destination R3 in the prior
value frame,
the value stack size is reduced to remove R0 and R1 of the finished call,

19/129

and the call frame is popped from the call stack.

In order for execution to be as performant as possible, the executor intensively relies on
unsafe functions. Safety of these calls mostly relies on correctness of the translation See

Translation Output Validation for further details.

20/129

Code Review Discussion and Findings
This section communicates results, data, and findings of the code review performed over the
duration of the audit. The code review was performed in accordance with section Methodology
where analysis of the translator and executor were performed; as well as specific targeted
inspection of each unsafe call.

The Wasmi codebase is generally well-organized, adheres to Rust best practices and contains
informative doc comments in various places, as well as explanations for particular invariants
which may be unobvious.

Findings presented in this section are issues that can cause the interpreter to fail, malfunction,
and/or be exploited, and should be properly addressed. Informative findings presented in this
section do not necessarily represent any flaw in the code itself. However, they indicate areas
where the code may need external support or deviate from best practices.

Translator
We performed a best-effort code review of the Translator (under
crates/wasmi/src/engine/translator). Results are summarized in the following table.

File Code Review Findings
control_frame.rs Informative findings

control_stack.rs No issues found

driver.rs Informative findings

error.rs No issues found

instr_encoder.rs Informative findings

labels.rs No issues found

mod.rs Informative findings, Missing copy in select translation

relink_result.rs Informative findings

stack/consts.rs Informative findings

stack/locals.rs No issues found

stack/mod.rs Informative findings

stack/provider.rs Informative findings

stack/register_alloc.rs Inconsistencies in RegisterAlloc Bounds

typed_value.rs No issues found

utils.rs No issues found

visit_register.rs visit_input_registers does not visit all registers of a RegisterSpan

visit.rs Informative findings

21/129

Informative findings mentioned in this table include small inconsistencies, typos, code quality
suggestions or other trivial issues in code or documentation. These have been reported directly
to the Wasmi development team as soon as detected, and are not detailed further in this report.

Commits fixing informative findings:

https://github.com/wasmi-
labs/wasmi/commit/c0f79e1f8ad38847023b72fea5a738ddca13167b
https://github.com/wasmi-
labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-
labs/wasmi/commit/efb0329b320278f46653c561ca0a2c1f47750a78

Executor
We established an overview of the Wasmi instructions in comparison to corresponding Wasm
instructions. Then we inspected the implementation of each family of instructions, with a focus
on potential problems caused by their use of unsafe Rust code.

unsafe Rust Code
Throughout the wasmi code base there are various usages of unsafe . Each of these usages
expands the capabilities of Rust, and so weakens the safety guarantees typically enforced by
the Rust compiler. The conventional way to ensure that a usage of unsafe Rust is safe is to
check the safety invariants that the particular usage requires, and to write a Safety comment
that details how the calling code / context upholds the invariants. As part of the audit we
inspected many usages of unsafe Rust, focusing on the unsafe Rust usage in the engine
and particularly executor (sub-)modules. Each inspection had a best effort to ensure that the
Safety invariants are satisfied, and so no undefined behaviour could be expected to occur

from these locations.

A table detailing the analysis can be found in the Appendix: Appendix: unsafe Rust Checklist

22/129

https://github.com/wasmi-labs/wasmi/commit/c0f79e1f8ad38847023b72fea5a738ddca13167b
https://github.com/wasmi-labs/wasmi/commit/c0f79e1f8ad38847023b72fea5a738ddca13167b
https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/commit/efb0329b320278f46653c561ca0a2c1f47750a78
https://github.com/wasmi-labs/wasmi/commit/efb0329b320278f46653c561ca0a2c1f47750a78

[C1] CompiledFuncEntity can take more
than u32::MAX entries

Severity: Low Recommended Action: Fix Code Addressed by client

Description
Inside code_map.rs inside the engine module, the struct CompiledFuncEntity has a function
new with a comment that indicates that the function should panic if called with instrs length

greater than u32::MAX . However this is not enforced in the code, and testing verified it is
possible to exceed the bound without triggering a panic.

Recommendations
Likely the best course of action is to add an assertion that triggers the panic. However if it is
intended for this bound to be able to be exceeded then the comment should be removed.
Furthermore, there should be an upper bound enforced that is consistent with Wasm.

Status

This issue is fixed on main by PR#1207

23/129

https://github.com/wasmi-labs/wasmi/blob/9f465244a378c69e3b5550b5310a53b9e9f26cf0/crates/wasmi/src/engine/code_map.rs#L742
https://github.com/wasmi-labs/wasmi/pull/1207/files

[C2] Inconsistencies in RegisterAlloc
Bounds

Severity: Low Recommended Action: Fix Code Not addressed by client

Description

According to code inspection and discussions with the Wasmi development team, the dynamic
and preservation space of registers satisfy the following invariants of RegisterAlloc :
dynamic(r): min_dynamic <= r < max_dynamic
preserve(r): min_preserve < r <= max_preserve

Relationship between max_dynamic and min_preserve

In order for the two register spaces to be distinct, max_dynamic <= min_preserve needs to
hold. However, RegisterAlloc methods do not agree whether equality is allowed or not.

For example, push_dynamic() admits equality (it performs the check before applying the
increment):

whereas push_dynamic_n does not (it performs the check after applying the increment):

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 248 to 257 in 02621ad

248248 pubpub fnfn push_dynamicpush_dynamic((&&mutmut selfself)) ->-> ResultResult<<RegisterRegister,, ErrorError>> {{
249249 selfself..assert_alloc_phaseassert_alloc_phase(());;
250250 ifif selfself..next_dynamic next_dynamic ==== selfself..min_preserve min_preserve {{
251251 returnreturn ErrErr((ErrorError::::fromfrom((TranslationErrorTranslationError::::AllocatedTooManyRegistersAllocatedTooManyRegisters))));;
252252 }}
253253 letlet reg reg == RegisterRegister::::from_i16from_i16((selfself..next_dynamicnext_dynamic));;
254254 selfself..next_dynamic next_dynamic +=+= 11;;
255255 selfself..max_dynamic max_dynamic == maxmax((selfself..max_dynamicmax_dynamic,, selfself..next_dynamicnext_dynamic));;
256256 OkOk((regreg))
257257 }}

24/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L248-L257

Uninhabitable register index

Even if max_dynamic = min_preserve is allowed, for r = max_dynamic = min_preserved ,
neither dynamic(r) nor preserve(r) .

This can lead to spurious TranslationError::AllocatedTooManyRegisters errors:

Moreover, register_space() returns RegisterSpace::Dynamic for such a register:

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 268 to 283 in 02621ad

268268 pubpub fnfn push_dynamic_npush_dynamic_n((&&mutmut selfself,, n n:: usizeusize)) ->-> ResultResult<<RegisterSpanRegisterSpan,, ErrorError>> {{
269269 fnfn next_dynamic_nnext_dynamic_n((thisthis:: &&mutmut RegisterAllocRegisterAlloc,, n n:: usizeusize)) ->-> OptionOption<<RegisterSpanRegisterSpan>> {{
270270 letlet n n == i16i16::::try_fromtry_from((nn))..okok(())??;;
271271 letlet next_dynamic next_dynamic == this this..next_dynamicnext_dynamic..checked_addchecked_add((nn))??;;
272272 ifif next_dynamic next_dynamic >=>= this this..min_preserve min_preserve {{
273273 returnreturn NoneNone;;
274274 }}
275275 letlet register register == RegisterSpanRegisterSpan::::newnew((RegisterRegister::::from_i16from_i16((thisthis..next_dynamicnext_dynamic))));;
276276 this this..next_dynamic next_dynamic +=+= n n;;
277277 this this..max_dynamic max_dynamic == maxmax((thisthis..max_dynamicmax_dynamic,, this this..next_dynamicnext_dynamic));;
278278 SomeSome((registerregister))
279279 }}
280280 selfself..assert_alloc_phaseassert_alloc_phase(());;
281281 next_dynamic_nnext_dynamic_n((selfself,, n n))
282282 ..ok_or_elseok_or_else((|||| ErrorError::::fromfrom((TranslationErrorTranslationError::::AllocatedTooManyRegistersAllocatedTooManyRegisters))))
283283 }}

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 250 to 252 in 02621ad

250250 ifif selfself..next_dynamic next_dynamic ==== selfself..min_preserve min_preserve {{
251251 returnreturn ErrErr((ErrorError::::fromfrom((TranslationErrorTranslationError::::AllocatedTooManyRegistersAllocatedTooManyRegisters))));;
252252 }}

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/stack/register_alloc.rs
Line 165 to 176 in 02621ad

165165 pubpub fnfn register_spaceregister_space((&&selfself,, register register:: RegisterRegister)) ->-> RegisterSpaceRegisterSpace {{
166166 ifif register register..is_constis_const(()) {{
167167 returnreturn RegisterSpaceRegisterSpace::::ConstConst;;
168168 }}
169169 ifif selfself..is_localis_local((registerregister)) {{
170170 returnreturn RegisterSpaceRegisterSpace::::LocalLocal;;
171171 }}
172172 ifif selfself..is_preservedis_preserved((registerregister)) {{
173173 returnreturn RegisterSpaceRegisterSpace::::PreservePreserve;;
174174 }}
175175 RegisterSpaceRegisterSpace::::DynamicDynamic
176176 }}

25/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L268-L283
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L250-L252
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/stack/register_alloc.rs#L165-L176

Recommendation

Adjust the definition of the bounds so that the whole register space can be utilized. Document
these invariants. Make sure checks for bounds are consistent.

Status

Acknowledged by client.

26/129

[C3] Underestimated Fuel Consumption of
Table and Memory Instructions

Severity: Low Recommended Action: Fix Code Not addressed by client

Description

FuelCosts::cost_per uses a truncating u64 division to compute fuel amounts.

This may result in fuel_for_bytes and fuel_for_copies returning 0 (with the default cost
of 8 registers (copies) per fuel and 64 bytes per fuel).

fuel_for_copies is used in several places. During the translation when generating Copy and
Return instructions, a base fuel is added to account for the truncation

but several other call sites do not make this adjustment: the code to finalize function translation
and for table-related operations don't adjust fuel.

fuel_for_bytes is only used in memory instructions. These instructions consume their fuel
dynamically, without adjustment to account for the truncation. See MemoryEntity::grow for an
example:

wasmi-labs/wasmi/crates/wasmi/src/engine/config.rs
Line 132 to 135 in 02621ad

132132 /// Returns the fuel consumption of the amount of items with costs per items./// Returns the fuel consumption of the amount of items with costs per items.
133133 fnfn costs_percosts_per((len_itemslen_items:: u64u64,, items_per_fuel items_per_fuel:: NonZeroU64NonZeroU64)) ->-> u64u64 {{
134134 len_items len_items // items_per_fuel items_per_fuel
135135 }}

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/instr_encoder.rs
Line 468 to 473 in 02621ad

468468 // Note: The fuel for copies might result in 0 charges if there aren't// Note: The fuel for copies might result in 0 charges if there aren't
469469 // enough copies to account for at least 1 fuel. Therefore we need// enough copies to account for at least 1 fuel. Therefore we need
470470 // to also bump by `FuelCosts::base` to charge at least 1 fuel.// to also bump by `FuelCosts::base` to charge at least 1 fuel.
471471 selfself..bump_fuel_consumptionbump_fuel_consumption((fuel_infofuel_info,, FuelCostsFuelCosts::::basebase))??;;
472472 selfself..bump_fuel_consumptionbump_fuel_consumption((fuel_infofuel_info,, ||costscosts|| {{
473473 costs costs..fuel for copiesfuel_for_copies((restrest..lenlen(()) asas u64u64 ++ 33))

27/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L99-L130
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/config.rs#L132-L135
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L468-L473

Recommendation

The most appropriate fix would be to modify the costs_per function such that it will round up
instead of truncate the computed fuel value.

Status

Acknowledged by client

wasmi-labs/wasmi/crates/wasmi/src/memory/mod.rs
Line 294 to 307 in 02621ad

294294 ifif letlet SomeSome((fuelfuel)) == fuel fuel {{
295295 letlet additional_bytes additional_bytes == additional additional..to_bytesto_bytes(())..unwrap_orunwrap_or((usizeusize::::MAXMAX)) asas u64u64;;
296296 ifif fuel fuel
297297 ..consume_fuel_ifconsume_fuel_if((||costscosts|| costs costs..fuel_for_bytesfuel_for_bytes((additional_bytesadditional_bytes))))
298298 ..is_erris_err(())
299299 {{
300300 returnreturn notify_limiternotify_limiter((limiterlimiter,,

EntityGrowErrorEntityGrowError::::TrapCodeTrapCode((TrapCodeTrapCode::::OutOfFuelOutOfFuel))));;
301301 }}
302302 }}
303303 // At this point all checks passed to grow the linear memory:// At this point all checks passed to grow the linear memory:
304304 ////
305305 // 1. The resource limiter validated the memory consumption.// 1. The resource limiter validated the memory consumption.
306306 // 2. The growth is within bounds.// 2. The growth is within bounds.
307307 // 3. There is enough fuel for the operation.// 3. There is enough fuel for the operation.

28/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/mod.rs#L294-L307

[C4] Large inputs to raw pointer functions
may cause undefined behaviour depending
on target

Severity: High Recommended Action: Fix Code Not addressed by client

Description

There are 4 calls to *mut or *const functions that have a common Safety comment. These
calls are:

engine/bytecode/instr_ptr.rs::InstructionPtr::offset calling <const* T>::offset with
count: isize ;

engine/executor/stack.rs::FrameRegister::register_offset calling <mut* T>::offset with
count: isize ;

engine/bytecode/instr_ptr.rs::InstructionPtr::add calling <const* T>::add with
count: usize

engine/executor/stack/values.rs::BaseValueStackOffset::stack_ptr_at calling <mut* T>::add
with count: usize ;

These calls in particular are common in that they both take an unbounded argument on the type
that may violate the Safety comment of ():

/// * The offset in bytes, count * size_of::<T>() , computed on mathematical integers
(without
/// "wrapping around"), must fit in an isize .

let TYPE = InstructionPtr∣UntypedVal

sizeof::<TYPE> × count ≤ isize::MAX

count ≤ ⌊ ​⌋
sizeof::<TYPE>

isize::MAX

count ≤ ⌊ ​⌋8
2 −1n−1

1

29/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L27-L40
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/const_ptr.rs#L349-L400
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L423-L427
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/mut_ptr.rs#L347-L400
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L42-L48
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/const_ptr.rs#L808-L863
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L118
https://github.com/rust-lang/rust/blob/5384697e9e73709301850a414e1cc40324e6460b/library/core/src/ptr/mut_ptr.rs#L890-L945

Calculating the maximum for count for each word size gives:

Case n = 8:

Case n = 16:

Case n = 32:

Case n = 64:

Case n = 128:

It is possible to overflow for all functions, as the input is unbounded isize for
InstructionPtr::offset and FrameRegister::register_offset , and the input is

count ≤ ⌊ ​⌋23
2 −1n−1

count ≤ ⌊ ​⌋23
2 −17

count ≤ 15

count ≤ ⌊ ​⌋23
2 −115

count ≤ 4095

count ≤ ⌊ ​⌋23
2 −131

count ≤ 268435455

count ≤ ⌊ ​⌋23
2 −163

count ≤ 1152921504606846975

count ≤ ⌊ ​⌋23
2 −1127

count ≤ 21267647932558653966460912964485513215

n-bit count max count max as integer u n ::MAX i n ::MAX

n ...

8 15 255 127

16 4095 65535 32767

32 268435455 4294967295 2147483647

64 1152921504606846975 18446744073709551615 9223372036854775807

128 2126764793255865396646
0912964485513215

3402823669209384634633
74607431768211455

1701411834604692317316
87303715884105727

​23
i<n>::MAX 2 −n 1 2 −n−1 1

​23
i8::MAX

​23
i16::MAX

​

23
i32::MAX

​23
i64::MAX

​23
i128::MAX

30/129

unbounded usize for InstructionPtr::add and ValueStack::stack_ptr_at . With
exception that FrameRegisters::register_offset is restricts offset to an i16 no matter the
architecture.

Recommendations
There should be a guard to ensure that the maximum value is not exceeded. If this is a
performance issue it should be on extra-checks option.

Status

Acknowledged by client. Furthermore, there is active development to add postconditions and
extra checks into Wasmi in this PR.

31/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://discord.com/channels/824582698147905556/1275463438931591319/1295775569450893354

[CI1] Best Practices and Notable
Particularities

Severity: Informative Addressed by client

Description

Here are some notes on the protocol particularities, comments, and suggestions to improve the
code or the design logic of the protocol in a best-practice sense. They do not in themselves
present issues to the audited protocol but are advised to either be aware of or to be followed
when possible, and may explain minor unexpected behaviors on the deployed project.

1. Panic comment on for engine/bytecode/utils.rs::from_source_to_dst does not actually occur
in code.

2. Magic numbers in engine/code_map.rs::UncompiledFuncEntity::compile.
3. EngineFuncSpan relies on an invariant that start <= end , however it is possible to create

an instance of this struct that violates that.
4. engine/executor/instrs.rs::get_entity! macro matches on a function with parameter

store: &StoreInner , however this parameter is unused.
5. The way the FunctionBody gets deconstructed in parse_buffered_code , and then

reconstructed in FuncTranslationDriver::new appears inconsistent: While "eager"
translation uses an offset which is obtained from the original FunctionBody , the "lazy"
translation uses an offset of 0 . The offset appears redundant.

6. The Sync instance for Arena<Idx,T> requires T to be Send (should be Sync). Given
the instances used with Arena , this is without consequence at the moment.

7. Currently Wasmi is largely maintained by 1 person which presents a single point of failure.
Should there be a pressing issue or update required of Wasmi and that person is
unavailable, then it may be difficultly for other developers to address the issue.

8. In engine/executor/instrs/return_.rs there are functions of the form execute_return* which
execute instructions of the form Instructions::Return* . Many of the comments for these
functions incorrectly label which instruction is being executed. Here is one example.

Recommendations

32/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/utils.rs#L736-L758
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L578-L579
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L71-L144
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L864-L903
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L159-L170
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/driver.rs#L19-L31
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/engine/mod.rs#L616-L634
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/engine/mod.rs#L616-L634
https://github.com/wasmi-labs/wasmi/blob/55b18f1d2745e1c73d13defff41a8edc5590d345/crates/wasmi/src/module/parser.rs#L480-L496
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L609
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L609
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L42
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L272

For each of the topics elaborated above, we recommend implementing the following
approaches into the protocol's contracts:

1. Remove the comment, the client confirmed that the function should not panic if it would
return BranchOffset(0)

2. Change these numbers to constants, or add them to the config.
3. Add a function to EngineFuncSpan::new(start: EngineFunc, end: EngineFunc) that

constructs an EngineFuncSpan but with a guard that enforces start <= end . All
constructions of EngineFuncSpan must happen through this function.

4. Remove the unused parameter
5. Investigate the de-facto value of the offset and remove it if redundant, possibly use

original FunctionBody for translation.
6. Change T: Send to T: Sync
7. Increase the knowledge base of Wasmi to more people. A good start could be adding code

review for PRs to Stellar / Soroban, so that they are now becoming increasingly familiar
with the code as it evolves.

8. Correct the comments to the mislabeled instructions.

Status

1. Removed on main branch (v.0.37.0 and above)
2. Fixed on main branch PR#1239
3. Fixed on main branch PR#1239
4. Changed on main branch (v0.37.2 and above)
5. Fixed on main branch. PR#1241
6. Fixed on main branch PR#1239
7. Acknowledged. Furthermore, there are active efforts to increase the knowledge base of

Wasmi to more people, and code review for Stellar / Soroban on PRs is considered.
8. Fixed on main branch PR#1239

33/129

https://github.com/wasmi-labs/wasmi/commit/39414e86b75e25747d84204417c99ba2c970f373
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/commit/55b18f1d2745e1c73d13defff41a8edc5590d345
https://github.com/wasmi-labs/wasmi/pull/1141/files
https://github.com/wasmi-labs/wasmi/pull/1239
https://github.com/wasmi-labs/wasmi/pull/1239

[CI2] Results of cargo-audit
Severity: Informative Addressed by client

Description
Rustsec tool cargo-audit was run and returned two warnings (RUSTSEC-2024-0375,
RUSTSEC-2021-0145) related to one crate atty which is unmaintaned. Recommended fix is to
use std::io::IsTerminal for Rust version ^1.70.0 . However this crate is a downstream
dependency of wasi-cap-std-sync.

Recommendations
Change dependencies in such a way that avoids using the atty crate.

Status
This issue was already addressed by https://github.com/wasmi-labs/wasmi/pull/1140 for main
and v0.37.0+ . No fix is implemented for 0.36.x , however since this is a wasi dependency it
should not affect Stellar / Soroban.

34/129

https://github.com/rustsec/rustsec
https://rustsec.org/advisories/RUSTSEC-2024-0375
https://rustsec.org/advisories/RUSTSEC-2021-0145
https://crates.io/crates/atty
https://doc.rust-lang.org/stable/std/io/trait.IsTerminal.html
https://crates.io/crates/wasi-cap-std-sync
https://github.com/wasmi-labs/wasmi/pull/1140

[CI3] visit_input_registers does not visit
all registers of a RegisterSpan

Severity: Informative Recommended Action: Document Prominently Not addressed by client

Description

The visit_input_registers trait provides a way to visit, and potentially modify, the input
register references contained in instructions. However, the implementation is incomplete
because in case of a RegisterSpan , only the first register of the span is visited and modified.
It is not possible in general to implement a complete solution for RegisterSpan because the
length of a RegisterSpan (i.e., how many and which registers are in fact addressed by it) is not
known from the data type alone, but determined by the context in which the RegisterSpan is
used.

For the use case of defragmenting the preservation space, the visit_input_registers
implementation is sufficient because the entire register span will be moved when moving its first
register.

The second call site of visit_input_registers , within encode_local_set , tries to determine
whether a given register was used by an instruction. This will not detect usage when the given
register is addressed as part of a RegisterSpan .

Recommendation

For future development on Wasmi, it should be documented that visit_input_registers is
incomplete to avoid introducing bugs because of an assumption of completeness.

Status

Reported to the client, implications discussed. Because the given register is in the preservation
space, it is believed that no cases exist where it could be part of a register span and therefore
no fix is required.

35/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit_register.rs#L31
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/visit_register.rs#L685-L689
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L888-L897
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/translator/instr_encoder.rs#L819-L833

[CI4] Missing copy in select translation
Severity: Informative Recommended Action: Fix Code Not addressed by client

Description

The translation step for select relies on constant propagation to achieve an efficient encoding
for the instruction.

For example, if the condition is a constant, then the selected value can just be pushed back
onto the value stack. However, if the value is a dynamic or preservation register, in order to
avoid overwriting the value later, a copy instruction is emitted (see Output mismatch between
Wasmi and Wasmtime #2):

If the two values represent the same register, a similar optimization applies. In this case
however, dynamic and preservation registers are not special cased, and no copy instruction is
emitted:

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/mod.rs
Line 2209 to 2220 in 8a1c6d8

22092209 // Case: constant propagating a dynamic or preserved register// Case: constant propagating a dynamic or preserved register
might overwrite it inmight overwrite it in

22102210 // future instruction translation steps and thus we may// future instruction translation steps and thus we may
require a copy instructionrequire a copy instruction

22112211 // to prevent this from happening.// to prevent this from happening.
22122212 letlet result result == selfself..allocalloc..stackstack..push_dynamicpush_dynamic(())??;;
22132213 letlet fuel_info fuel_info == selfself..fuel_infofuel_info(());;
22142214 selfself..allocalloc..instr_encoderinstr_encoder..encode_copyencode_copy((
22152215 &&mutmut selfself..allocalloc..stackstack,,
22162216 result result,,
22172217 selected selected,,
22182218 fuel_info fuel_info,,
22192219))??;;
22202220 returnreturn OkOk(((())));;

wasmi-labs/wasmi/crates/wasmi/src/engine/translator/mod.rs
Line 2229 to 2235 in 8a1c6d8

22292229 ifif lhs lhs ==== rhs rhs {{
22302230 // # Optimization// # Optimization
22312231 ////
22322232 // Both `lhs` and `rhs` are equal registers// Both `lhs` and `rhs` are equal registers
22332233 // and thus will always yield the same value.// and thus will always yield the same value.
22342234 selfself..allocalloc..stackstack..push_registerpush_register((lhslhs))??;;
22352235 returnreturn OkOk(((())));;

36/129

https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2209-L2220
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235
https://github.com/wasmi-labs/wasmi/blob/8a1c6d81119436d0ee5f5300c34ad868ff342780/crates/wasmi/src/engine/translator/mod.rs#L2229-L2235

Recommendation

It is not evident that this is a safe optimization. If it is, consider documenting it with comments. If
it is not, the copy instruction should be emitted. Adding an assertion to enforce the desired
behaviour is also recommended.

Status

Acknowledged by client.

37/129

Suggested Executor Assertions
Severity: Informative Not addressed by client

The execution of some of the Wasmi instructions relies on assumptions on the translator's
instruction output.
In some of these cases, assertions could be inserted into the executor code to double-check
that the instructions adhere to the expected invariants (if desired, such assertions can be
implemented with debug_assert to avoid performance penalties in release builds).

Copying between registers, assuming no overlap
The CopySpanNonOverlapping and CopyManyNonOverlapping are intended to be used when it
can be guaranteed that while copying the values, no register is read from that has already been
written to before (assuming a forward traversal of the registers).
Assuming no such overlap between the source and target register sets, values are copied
directly without a temporary buffer.

For CopySpanNonOverlapping , the function has_overlapping_copies(_, _) can be used
to ensure at runtime that this is respected by the generated code.
For CopyManyNonOverlapping , each of the source registers would have to be checked
individually, by keeping a record of registers that have already been written to (in the
respective code, the span starting at results.head() up to the current result . A similar
check is implemented in the translator).

These can also be implemented as static checks (see Translation Output Validation) because
the registers involved in the Copy instructions are known after translation.

BranchTable instruction assumes a valid sequence of
Branch or Return instructions follows

The implementation of BranchTable increments the instruction pointer by the index value,
assuming that it will point to a Branch or Return instruction afterwards. This could be
checked by confirming the type of the instruction that ip points to after the adjustment. It can
also be a static check (see Translation Output Validation) because the maximal length is known
statically.

38/129

https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/wasmi-labs/wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/copy.rs#L93-L98
https://github.com/runtimeverification/_audits_wasmi-labs_wasmi/blob/v0.36.0/crates/wasmi/src/engine/executor/instrs/branch.rs#L46-L57

Check InstructionPtr (and FrameRegister) range to
(dynamically) protect against overflow
The offset and add methods to adjust the InstructionPtr require the caller to ensure that
the resulting instruction pointer always remains within the bounds of the current function. This
could be checked within those methods by storing the valid range (in the InstructionPtr itself
or in function call frames). This will however have a performance penalty because of the high
frequency of instruction pointer changes. Therefore a check of the translated code before
execution, as described in Translation Output Validation, is preferable, especially because all
call sites of InstructionPtr::add and InstructionPtr::offset have statically-known or
bounded arguments.

Similarly, FrameRegister could store the range to ensure that register_offset function does
not overflow or underflow.

Status
These assertions are acknowledged. However their inclusion may occur in one of two different
configurations, extra-check , or translation post-conditions . These configurations aim to
create a modular approach to including higher security guarantees. extra-checks will be
optional on production code to include stronger guarantees that only incur an insignificant or
minor overhead. translation post-conditions are exclusively for debug compilation as the
checks will incur a high performance cost. PR#1233 has active development for
translation post-conditions .

39/129

https://github.com/wasmi-labs/wasmi/pull/1233

Translation Output Validation
Severity: Informative Not addressed by client

Many instruction implementations in Wasmi rely on assumed properties of the instruction
sequence produced by the Wasm-to-Wasmi translator, which in turn relies on the Wasm
bytecode being validated.
In order to ensure that the Wasmi bytecode does not crash during execution, some properties of
the Wasmi bytecode could be double-checked. These properties can be either local to compiled
(translated) functions, or refer to global properties that concern an entire module (including all
its imports).

Instruction Sequence Validations
As soon as a Wasm function is compiled to Wasmi, its CompiledFuncEntity can be validated.

The sequence of instrs must have the following properties:

1. Some instructions require certain "instruction parameters" (encoded in the same
Instruction type) to follow immediately. In turn, these instruction parameters (e.g.,
Const32 , TableIdx , Register) never occur by themselves without preceeding context.

Details are described in wasmi::bytecode::Instruction and in Appendix: Wasmi
Instruction Set Overview .

This can be checked easily by a forward pass through the instruction sequence.

wasmi-labs/wasmi/crates/wasmi/src/engine/code_map.rs
Line 710 to 722 in 02621ad

710710 pubpub structstruct CompiledFuncEntityCompiledFuncEntity {{
711711 /// The sequence of [`Instruction`] of the [`CompiledFuncEntity`]./// The sequence of [`Instruction`] of the [`CompiledFuncEntity`].
712712 instrs instrs:: PinPin<<BoxBox<<[[InstructionInstruction]]>>>>,,
713713 /// The constant values local to the [`EngineFunc`]./// The constant values local to the [`EngineFunc`].
714714 consts consts:: PinPin<<BoxBox<<[[UntypedValUntypedVal]]>>>>,,
715715 /// The number of registers used by the [`EngineFunc`] in total./// The number of registers used by the [`EngineFunc`] in total.
716716 //////
717717 /// # Note/// # Note
718718 //////
719719 /// This includes registers to store the function local constant values,/// This includes registers to store the function local constant values,
720720 /// function parameters, function locals and dynamically used registers./// function parameters, function locals and dynamically used registers.
721721 len_registers len_registers:: u16u16,,
722722 }}

40/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L710-L722

2. All instructions in the sequence should refer only to registers in the range allocated by
alloc_call_frame , of length len_registers . However, registers are accessed using an

offset of consts.len() from the (value) frame offset, i.e., accesses to constants inside a
function use a negative register index (see ValueStack , StackOffsets and the
sp: FrameRegisters field in Engine).

A forward pass through the instruction sequence can verify this for all instructions and
instruction parameters that carry Register arguments.
However, instructions with RegisterSpan arguments will sometimes require
consideration of the instruction context (e.g., CopyMany), as the length of the
RegisterSpan is not part of this data structure.

For these instructions, the maximum register that is accessed typically depends on
how many RegisterList , Register , Register2 , or Register3 instructions follow.
This requires reading ahead in the instruction sequence.

3. All branch targets must stay within the function's instruction sequence.
The Wasm instruction set uses the concept of structured control instructions and implicit
labels to specify branch targets for branch instructions. Wasmi translation resolves these
labels to integer offsets from the current instruction pointer. The Wasm If instruction is
also compiled to a (fused) Wasmi branch instruction. The generated offset s in branch
instructions are not allowed to move the instruction pointer outside the range of the current
function's instructions.

This can be implemented by a forward pass through the instructions considering the
relative position of the instruction in the instrs array.
For each offset found in an instruction, offset + position must be between
[0..instrs.len()] .

Branch tables in Wasmi are built from sequences of branch instructions which do not
require special treatment. The BranchTable instruction itself performs a forward jump
of dynamic but bounded size and can be checked using the size bound.

Checking References to Wasm Store Objects Contained in
Instructions
Besides these local properties, the instruction sequence contains references to objects from the
Wasm store: tables, memories, data segments, globals, and other functions. In order to ensure

41/129

that no instruction crashes, it must be ensured that this store indeed contains the referenced
entity for all relevant instructions:

Table indexes within CallIndirectParams , TableSize , and of course TableIdx , must
refer to existing tables;
Data segment indexes within DataSegmentIdx and DataDrop , must refer to existing
data segments;
Element segment indexes within ElementSegmentIdx and ElemDrop , must refer to
existing data segments;
Function indexes within RefFunc , must refer to existing (compiled or uncompiled)
functions.

These properties can be checked using the function's respective ModuleHeader .

All indexed entities are already present in the module header, although they are populated
during module instantiation. The Wasm validation already checks all entity indexes before
translation to Wasmi, so checking the existence of respective entities in Wasmi data structures
duplicates these checks.

Checking that function calls have the correct arity (arg.
count)

wasmi-labs/wasmi/crates/wasmi/src/module/mod.rs
Line 68 to 86 in 02621ad

6868 pubpub structstruct ModuleHeaderModuleHeader {{
6969 inner inner:: ArcArc<<ModuleHeaderInnerModuleHeaderInner>>,,
7070 }}
7171
7272 #[derive(Debug)]#[derive(Debug)]
7373 structstruct ModuleHeaderInnerModuleHeaderInner {{
7474 engine engine:: EngineWeakEngineWeak,,
7575 func_types func_types:: ArcArc<<[[DedupFuncTypeDedupFuncType]]>>,,
7676 imports imports:: ModuleImportsModuleImports,,
7777 funcs funcs:: BoxBox<<[[DedupFuncTypeDedupFuncType]]>>,,
7878 tables tables:: BoxBox<<[[TableTypeTableType]]>>,,
7979 memories memories:: BoxBox<<[[MemoryTypeMemoryType]]>>,,
8080 globals globals:: BoxBox<<[[GlobalTypeGlobalType]]>>,,
8181 globals_init globals_init:: BoxBox<<[[ConstExprConstExpr]]>>,,
8282 exports exports:: MapMap<<BoxBox<<strstr>>,, ExternIdxExternIdx>>,,
8383 start start:: OptionOption<<FuncIdxFuncIdx>>,,
8484 engine_funcs engine_funcs:: EngineFuncSpanEngineFuncSpan,,
8585 element_segments element_segments:: BoxBox<<[[ElementSegmentElementSegment]]>>,,
8686 }}

42/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86
https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L68-L86

Call* instructions (and ReturnCall* variants for tail call optimization) provide function
arguments in subsequent Register* instructions.

For each function call, it should be checked that the function is called with the correct amount of
arguments. The amount of arguments (arity) cannot easily be determined from the
CompiledFuncEntity . Besides the argument count, the len_registers includes both a

(known) amount of constants (consts) and an amount of registers for internal use.
The actual arity is bounded by len_registers - consts.len() . Checking that no more than
len_registers - consts.len() arguments are provided ensures that the call to
copy_call_params (call.rs: 241) cannot overflow the allocated value stack frame.

More precise arity information could be obtained from the ModuleHeader , which contains the
types of all functions in the module.

Status
Planned, Add debug post-conditions for Wasmi translation created.

43/129

https://github.com/wasmi-labs/wasmi/issues/1209

Fuzzing Discussion and Findings
This section communicates specific results and findings for the fuzzing runs performed over the
duration of the audit. The fuzzing was performed in accordance with description given in section
Methodology - see there for a more in-depth explanation motivating our approach and goals for
the fuzzing campaign. The end of this section contains detailed information about all identified
issues.

Time and Compute Resources
Because fuzzing is a randomized, feedback-driven process which gives better results the more
iterations are run, with modern fuzzing tools also able to scale near linearly with the number of
available cores, additional compute power and time significantly increases the likelihood that a
vulnerability is identified. Towards that end, we allocated two powerful 16-core / 32-thread
machines for the fuzzing campaign:

An AMD Ryzen Threadripper 1950X with 64GB of RAM
An AMD Ryzen 9 7950X with 128 GB RAM

After an initial 1.5 week period spent familiarizing with the codebase, we ran fuzzers on these
machines near continuously for the remaining audit duration, yielding approximately 13
machine-weeks of total fuzzing time. The actual total duration is likely higher, as we also
performed numerous short exploratory runs on other machines while these longer-running
fuzzers were still executing.

As described in Methodology, our approach focused on end-to-end testing of the entire
interpretation pipeline for crash-freedom and conformance with other Wasm implementations,
homing in on thoroughly testing a small number of targets rather than distributing compute
resources too thinly. The table below provides the approximate machine-time spent on each
target, with descriptions of each target provided in the following sections.

Target Machine-Days Version Bugs
Translation 14 v0.36.0 1

Execution 26 v0.36.x 2

Execution 8 v0.37.x 2

Differential 30 v0.36.x 3

Performance 13 v0.36.x 0

44/129

Harnesses
For the standard, coverage-guided fuzzing which seeks to find interesting inputs by exploring as
many control-flow edges as possible, we built off of Wasmi's existing harnesses.

As an initial test case to evaluate our machine configuration and choice of fuzzing toolings, we
ran the Wasmi translator harness unmodified on both machines for approximately 1 week. This
translator harness simply generates random Wasm modules and calls the translator on them,
with no specific testing assertions other than the invariant that no crashes occur. While this did
reveal one bug, we decided not to dedicate further time to this harness after this period because
the other harnesses already adequately cover these same code paths, while also hitting the
more unsafe -dense parts of codebase with the executor where vulnerabilities are likely to
occur.

We then focused primarily on the two other harnesses, both of which generate a random Wasm
module using wasm-smith then call each exported function:

An executor harness, which makes no explicit test assertions, but which we compile with
sanitizer instrumentation and debug assertions enabled to identify crashes, failed
assertions, and memory safety violations.
A differential fuzzing harness, which checks results against wasmtime as well as a prior
stack-based version of Wasmi.

We iteratively refined these harnesses as described in Methodology, identifying the best
configurations for both the harness and the fuzzing tool to achieve maximal coverage. This
process is guided by intuition stemming from knowledge of the fuzzer internals, along with
empirical testing using numerous shorter fuzzing runs to evaluate possible changes, noting
factors such as the rate of coverage increase, the breadth of coverage (i.e. line and function-
based coverage), the depth of coverage (i.e. branch and path-based coverage), and the time for
each test iteration. Because of the exploratory nature and abundant number of shortly-tested
variations, in lieu of specific quantitative data, we provide a qualitative account highlighting the
most effective modifications found. These modifications have since been upstreamed into
Wasmi.

The wasm-smith configuration controls which Wasm features are available when generating
inputs from a given &[u8] seed, with parameters to set the minimum or maximum numbers of
various syntactic elements. In the existing harnesses, reasonable defaults were set for this

45/129

configuration with all supported features enabled. One of the most effective changes we made
was to instead switch to a swarm-testing approach, where the wasm-smith configuration is itself
dynamically produced from the input seed rather than fixed across all inputs. With a fixed
configuration, where all possible features are enabled, the numerous features compete against
each other for limited space within a single generated input, leading to each individual feature
only being exercised shallowly. With swarm testing, however, only a smaller subset of features
is enabled at any given time. This allows each of those features to be more thoroughly
represented within a single generated input, while the random selection of the enabled subset
still ensures a breadth of feature coverage across multiple inputs.

In the original executor harness, each randomly generated function is always called with a value
of 1 for every argument, with the client's hope being that mutation of the function body itself
would provide sufficient coverage despite these statically fixed inputs. In practice though, we
found that randomizing the inputs improved the overall coverage, both in terms of it's depth and
the number of iterations required to discover deeper control-flow paths. Crucially, the arguments
are generated using bytes from areas of the seed unconsumed by wasm-smith's generation
process.

At a high level, the improvements here make sense because randomizing the arguments
provides more opportunities for small mutations in the seed to produce correspondingly small
changes in the interpreter control-flow, improving the fuzzer's ability to iteratively work towards
producing edge-case inputs needed to hit deeper control flow paths. More explicitly, control-flow
paths are often guarded by comparisons requiring a particular edge-case value - checksums,
maximums, minimums, zeros, NaNs, etc. Honggfuzz attempts to find such values by recording
the Hamming distance between arguments of each cmp assembly instruction, preferentially
exploring inputs which shorten this distance for any particular cmp and thus are more likely to
change the comparison result and any dependent control-flow. Although wasm-smith makes an
effort to ensure small changes in the input seed produce small changes in the generated Wasm
module, there are many cases where this fails in practice - altering a single decision point in the
generation logic, e.g. the type of an argument, can radically alter the generated module.
Speculatively, this makes honggfuzz's cmp feedback mechanism less effective, as the entire
path leading to a particular cmp changes with each mutation if it is even reached at all, rather
than allowing some mutations which keeping that path relatively fixed and only alter the data
under comparison. By also randomizing the function arguments with the remaining un-
consumed parts of the seed, some mutations end up fixing the generated function body and

46/129

https://dl.acm.org/doi/abs/10.1145/2338965.2336763

only altering the generated argument value, still preserving the bulk of the interpreter control-
flow while moving closer to the desired cmp result, making it easier to achieve greater
coverage depth.

The original executor harness also relied on wasm-smith's ensure_termination functionality to
prevent the generation of infinite loops, which we replaced with Wasmi's built-in fuel metering.
This of course improved coverage for the fuel metering code, as well as iteration time due to a
more efficient implementation, but interestingly, it also seemed to decrease the number of
iterations needed to achieve a given level of coverage breadth. Speculatively, this is because
ensure_termination only inserts fuel metering at function headers and loop bodies, so for a

fixed fuel cost, more iterations are spent exploring seeds near a local-maxima wherein
generating additional instructions in the un-metered, straight line sections of code marginally
increases coverage or total instruction count (which is also considered as part of honggfuzz's
metric) without actually building towards more interesting edge-cases. With Wasmi's built-in fuel
metering, which instead applies a cost for each instruction, extending the straight line sections
of code comes at the cost of reducing complexity elsewhere, making it less likely that fuzzers
considered these inputs interesting

For the differential fuzzing harness, the original harness had nondeterministic failures where
one of compared Wasm interpreters ran out of stack space or register allocations due to
differing resource limits as permitted by the Wasm spec. This render the results uninteresting,
as it's difficult to differentiate actual issues versus this sort of false positive. For our fuzzing
campaign, we then modified the differential target to pass on these nondeterministic cases
instead of panicking, isolating any panics to the cases where all of the executors finish
successfully but have different outputs. We also modified the wasm-smith configuration for this
target to generate Wasm modules that look like the kind of modules that will be accepted by the
Soroban client, e.g. disabling multi-value support, floating points, threads, etc.

We additionally attempted to develop a performance-focused fuzzer, seeking to maximize
execution-time-per-unit-fuel and identify possible DoS vectors. This included both a fairly simple
modification to honggfuzz, swapping the order of consideration for instruction count versus
coverage updates when selecting previously-run inputs as a base for new inputs, as well as a
more involved custom fork of honggfuzz to develop an approach based on PerfFuzz. The latter
PerfFuzz-inspired fuzzer is still under development, and unfortunately some bugs in the fuzzer
implementation were not identified until after the runs performed for this audit, which likely
invalidates the efficacy of those attempts. No new vulnerabilities were revealed by either of

47/129

https://dl.acm.org/doi/10.1145/3213846.3213874

these performance-based fuzzing efforts, although it must be emphasized that the experimental
nature of this approach means that a lack of findings doesn't provide any guarantees regarding
the absence of relevant issues.

Identified Issues
In the rest of this section, we present all the issues identified by our fuzzing runs. In total, we
found 8 violations of expected behavior:

3 silently incorrect outputs
2 segfaults or memory corruption issues
1 hang
1 panic due to hitting code marked unreachable
1 failed debug assertion

For each issue, we report the versions of Wasmi that are affected, a brief description of the
actual vs expected behavior, a test case which triggers the bug, as well as links to any fixes
made by the client and the relevant releases. At the time of writing, all issues identified have
been patched in the most recent v0.36.x and v0.37.x release.

As with other findings in this report, we include a severity level ranging from low to high. One
subtlety worth highlighting is that a few of the identified issues require the reference-types or
multi-value Wasm proposals, which are disabled by present-day Soroban. For these issues,

if they are isolated and seem to fundamentally require the unsupported proposals, we assign
low severity regardless of other considerations. However, if they instead seem to be indicative
of a more general design risk, with a likelihood of there being yet-undiscovered analogous
vulnerabilities which do not require the unsupported proposals, we assign a severity as if the
issue applied to the Wasm MVP.

Note, however, that such issues marked low severity due to requiring reference-types or
multi-value were still important to address. Soroban may decide to extend their supported

Wasm features in the future as these proposals become more established, especially given that
they were recently enabled by default for the Rust compiler's code generation.

48/129

https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html

[F1] Abort on realloc() due to faulty
br_table optimization
Severity: High Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🆗, v0.36.2 🆗, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗

A Wasm program causes Wasmi to abort during a realloc() .

Program
realloc.wasm :

(module(module
 (func (;0;)(func (;0;)
 call 1call 1
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 dropdrop
 call 0)call 0)
 (func (;1;) (result i64 i64 i64 i64 i64 i64 i64 i64 i64)(func (;1;) (result i64 i64 i64 i64 i64 i64 i64 i64 i64)
 (local i32)(local i32)
 i64.const 0 i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 i64.const 0i64.const 0
 local.get 0local.get 0
 br_table 0 0)br_table 0 0)
 (export "" (func 0)))(export "" (func 0)))

Behavior
$ wasmi_cli realloc.wasm
realloc(): invalid next size
Aborted

49/129

Status
Fixed for 0.36 versions with a646d27 included in release v0.36.1. Does not occur in 0.37
versions due to changes in the br_table encoding which inadvertently addressed the issue.

Severity
This issue is marked as high severity because:

It is a critical memory error where the heap has been corrupted resulting in an out-of-
bounds write.
Although this particular issue is only reproducible with the multi-value proposal, which is
disabled by present-day Soroban, it is indicative of a more generally risky design that is
unrelated to multi-value .

Explicitly, one of the contributing factors for this issue is that RegSpan does not record its own
length, requiring it to be maintained correctly elsewhere lest a memory error occurs. It's hard to
guarantee no other similar vulnerabilities are present, and another issue related to this design
was already discovered in visit_input_registers does not visit all registers of a
RegisterSpan .

50/129

https://github.com/wasmi-labs/wasmi/commit/a646d27a4d69e73dffb30bf706bfb394dfa6a27f

[F2] Translator debug assertion fired due to
ref.is_null constant propagation
Severity: Low Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🆗, v0.36.2 🆗, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗
Unreleased: b48685f 🐞

A Wasm program causes the type-checking debug assertion in TypedVal::i64_eq to fire.

Program
assert.wat :
(module
 (func (result i32)
 ref.null func
 ref.is_null
)
)

Behavior
$ wasmi_cli --invoke '' --compilation-mode lazy assert.wat
thread 'main' panicked at wasmi-0.36.0/src/engine/translator/typed_value.rs:180:5:
assertion failed: matches!(self.ty(), < i64 as Typed > :: TY)

Status
Fixed for 0.36 versions with f09d121 included in release v0.36.1. Fixed for 0.37 versions with
78788f9 prior to the release of v0.37.0.

Severity
This issue is marked as low severity because:

It only occurs with debug assertions enabled.
Although the fired assertion does indicate an overlooked case in the design, the actual
runtime behavior would still be correct if the assertion were simply removed.

51/129

https://github.com/wasmi-labs/wasmi/commit/b48685f2b1c3edf118279af6cdf7603804e4a99c
https://github.com/wasmi-labs/wasmi/blob/b48685f2b1c3edf118279af6cdf7603804e4a99c/crates/core/src/typed.rs#L163
https://github.com/wasmi-labs/wasmi/commit/f09d1210732820e871064e88626a07a65cb0a6ee
https://github.com/wasmi-labs/wasmi/commit/78788f9717c12d8fbb1f0dc2ef560714e6c01d0e

Namely, the root cause is that ref.is_null delegates to the translation logic for i64.eqz ,
taking advantage of the fact that Wasmi serializes null as a 64-bit 0 . However, during
constant propagation, this calls TypedVal::i64_eq which contains a strict type checking
assertion requiring both sides to be a ValType::I64 before comparing them as Untyped . The
assertion fails because a FuncRef is not literally a ValType::I64 , even though the actual
comparison as Untyped would still be semantically correct.

52/129

[F3] Segmentation fault due to
visit_input_regs bug
Severity: Low Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🐞, v0.36.2 🐞, v0.36.3 🐞, v0.36.4 🐞, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗

A Wasm program causes a segmentation fault during execution of table.get 0 .

Program
segv.wat :
(module
 (type (;0;) (func))
 (func (;0;) (type 0)
 (local i32)
 local.get 0
 i32.const 0
 local.set 0
 table.get 0
 drop
)
 (table (;0;) 1 2 funcref)
 (export "" (func 0))
)

Behavior
$ wasmi_cli segv.wat
zsh: segmentation fault (core dumped) wasmi_cli bad.wat

Status
The root cause is that visit_input_regs fails to visit the input register for
Instruction:TableGet::index , so the preserved register input to
Instruction::TableGet (index) is not defraged at the end of translation.

Fixed for 0.36 versions with 82c9388 included in release v0.36.5. Does not occur in 0.37
versions due to a refactoring which allows these visitors to be generated automatically, exactly
to avoid this sort of bug.

53/129

https://github.com/wasmi-labs/wasmi/commit/82c9388f1d54e4e74e1b581f11978b4028eeaba2

Severity
This issue is marked as low severity because:

It only occurs with the reference-types proposal, which is disabled by present-day
Soroban.
Although the issue is a critical memory error, it is an isolated typo with no indication of
broader risk to the MVP or present-day Soroban.

54/129

[F4] Output mismatch between Wasmi and
Wasmtime #1

Severity: Low Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🆗, v0.36.2 🆗, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗
Unreleased: 1e5a4ba 🐞

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program
diff.wat :

(module(module
 (func (export "") (param i32) (result i32 i32 i32 i32)(func (export "") (param i32) (result i32 i32 i32 i32)
 local.get 0local.get 0
 local.get 0local.get 0
 block (param i32 i32)block (param i32 i32)
 local.tee 0local.tee 0
 block (param i32 i32)block (param i32 i32)
 local.get 0local.get 0
 local.get 0local.get 0
 br 2 ;; returnsbr 2 ;; returns
 endend
 endend
 unreachableunreachable
))
))

Behavior
Wasmi and Wasmtime report different outputs.
$ wasmi_cli diff.wat 1
[0, 1, 1, 1]
$ wasmtime diff.wat 1
1
1
1
1

Status

55/129

https://github.com/wasmi-labs/wasmi/commit/1e5a4baa351ef5dd404721910a007a5e07ab7fca

Fixed for 0.36 versions with 415a919 included in release v0.36.1. Fixed for 0.37 versions with
e9c6acf prior to the release of v0.37.0.

Severity
This issue is marked as low severity because:

It only occurs with the multi-value proposal, which is disabled by present-day Soroban.
It is an isolated issue with no indication of broader risk for to the MVP or present-day
Soroban.

56/129

https://github.com/wasmi-labs/wasmi/commit/415a919678e54efd2dcf187a7fda1c2df5a1e112
https://github.com/wasmi-labs/wasmi/commit/e9c6acf3cb8f2babc8136615ed157eee310a26a9

[F5] Output mismatch between Wasmi and
Wasmtime #2

Severity: High Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🐞, v0.36.2 🐞, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🐞, v0.37.1 🆗, v0.37.2 🆗

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program
diff.wat :

(module(module
 (func (export "test") (param i32) (result i32)(func (export "test") (param i32) (result i32)
 (i32.popcnt (local.get 0)) ;; case: true (i32.const 0)(i32.popcnt (local.get 0)) ;; case: true (i32.const 0)
 (i32.clz (i32.eqz (local.get 0))) ;; case: false (i32.const 31)(i32.clz (i32.eqz (local.get 0))) ;; case: false (i32.const 31)
 (i32.const 0) ;; condition (i32.const 0)(i32.const 0) ;; condition (i32.const 0)
 (select) ;; case: true (i32.const 31)(select) ;; case: true (i32.const 31)
 (i32.const 0) ;; case: false (i32.const 0)(i32.const 0) ;; case: false (i32.const 0)
 (i32.eqz (local.get 0)) ;; condition (i32.const 1)(i32.eqz (local.get 0)) ;; condition (i32.const 1)
 (select)(select)
))
))

Behavior
$ wasmtime diff.wat
warning: using `--invoke` with a function that returns values is experimental and may break
in the future
31
$ wasmi_cli diff.wat
1

Status
Fixed for 0.36 versions with 15a3802 included in release v0.36.3. Fixed for 0.37 versions with
8ed9469 included in release v0.37.1.

Severity

57/129

https://github.com/wasmi-labs/wasmi/commit/15a38024175b4a17792c7fe30f0b07b8abf10608
https://github.com/wasmi-labs/wasmi/commit/8ed9469f262baffb6050f8d3890850f466c1cfb2

This issue is marked as high severity because it affects the Wasm MVP as supported by
Soroban and can silently result in arbitrarily incorrect results.

58/129

[F6] Output mismatch between Wasmi and
Wasmtime #3

Severity: High Addressed by client

Context
Version 0.36: v0.36.0 🐞, v0.36.1 🐞, v0.36.2 🐞, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🐞, v0.37.1 🐞, v0.37.2 🆗

A Wasm program behaves differently on the Wasmi register-based executor when compared to
both the Wasmi stack-based executor and wasmtime.

Program
diff.wat :

(module(module
 (func (export "") (param i32) (result i32)(func (export "") (param i32) (result i32)
 (local.set 0 (i32.const 0))(local.set 0 (i32.const 0))
 (local.get 0)(local.get 0)
 (loop $continue(loop $continue
 (if (i32.eqz (local.get 0))(if (i32.eqz (local.get 0))
 (then(then
 (local.set 0 (i32.const 1))(local.set 0 (i32.const 1))
 (br $continue)(br $continue)
))
))
))
))
))

Behavior
$ wasmtime diff.wat 1
0
$ wasmi_cli diff.wat 1
1

Status
Fixed for 0.36 versions with 5859e15 included in release v0.36.4. Fixed for 0.37 versions with
ddc8e5e included in release v0.37.2.

Severity

59/129

https://github.com/wasmi-labs/wasmi/commit/5859e15a09078a8d15cbac7ccb7da85375306e5f
https://github.com/wasmi-labs/wasmi/commit/ddc8e5e564fd69d85bd45ec543208b52e655f43e

This issue is marked as high severity because it affects the Wasm MVP as supported by
Soroban and can silently result in arbitrarily incorrect results.

60/129

[F7] Executor hang on unreleased version
due to copy_span bug

Severity: Low Addressed by client

Context
Version 0.36: v0.36.0 🆗, v0.36.1 🆗, v0.36.2 🆗, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗
Unreleased: 17a4242 🐞

A Wasm program causes the executor to incorrectly hang, independently of fuel metering.

Program
hang.wat :
(module ;; hangs on main branch
 (func (export "") (result i32 i32 i32)
 (local i32 i32 i32)
 i32.const 0
 (block (result i32 i32 i32) ;; label = @1
 local.get 0
 local.get 1
 local.get 2
 (block
 ;; The next two instructions together cause an integer-overflow trap.
 f64.const 0x1.b1ddf4040cd22p+901
 i32.trunc_f64_u
 drop
)
)
 drop
)
)

Behavior
Wasmi v0.36.0 correctly reports an integer overflow
$ wasmi_cli --invoke '' --compilation-mode lazy --fuel 10000 hang.wat
Error: failed during execution of : integer overflow

but the same invocation hangs when tested on commit 17a4242.

Status

61/129

https://github.com/wasmi-labs/wasmi/commit/17a4242ff1c6988a6a015801d2f58ce72db5c27b
https://github.com/wasmi-labs/wasmi/commit/17a4242ff1c6988a6a015801d2f58ce72db5c27b

Does not occur in 0.36 versions. Fixed for 0.37 versions with 1e5a4ba prior to the release of
v0.37.0.

Note that this bug only occurred mid-development and was never published in a released
version of Wasmi.

Severity
This issue is marked as low severity because:

It only occurs with the multi-value proposal, which is disabled by present-day Soroban.
It is an isolated issue with no indication of broader risk for to the MVP or present-day
Soroban.

62/129

https://github.com/wasmi-labs/wasmi/commit/1e5a4baa351ef5dd404721910a007a5e07ab7fca

[F8] Executor panic on unreleased version
due to br_table_many bug

Severity: Low Addressed by client

Context
Version 0.36: v0.36.0 🆗, v0.36.1 🆗, v0.36.2 🆗, v0.36.3 🆗, v0.36.4 🆗, v0.36.5 🆗
Version 0.37: v0.37.0 🆗, v0.37.1 🆗, v0.37.2 🆗
Unreleased: a101c50 🐞

A Wasm program causes the executor to panic.

Program
crash.wat :
(module
 (func (result i32 i32 i32 i32)
 i32.const 1
 i32.const 0
 i32.const 1
 i32.const 0
)
 (func (export "") (result i32 i32 i32 i32)
 (block (result i32 i32 i32 i32) ;; label = @1
 i32.const 0
 call 0
 br_table 0 1 1
)
)
)

Behavior
Wasmi v0.36.0 correctly runs the example
$ wasmi_cli --invoke '' --compilation-mode lazy crash.wat
[0, 1, 0, 1, 0]

but the same invocation panics with commit a101c50
$ wasmi_cli --invoke '' --compilation-mode lazy crash.wat
thread 'main' panicked at crates/wasmi/src/engine/executor/instrs/return_.rs:252:27:
internal error: entered unreachable code: unexpected `Instruction` found while executing
`Instruction::ReturnMany`: BranchTableTarget { results: RegSpan(Reg(6)), offset:
BranchOffset(3) }

63/129

https://github.com/wasmi-labs/wasmi/commit/a101c5057ccd47520ba50b196653e7ca192dacf9
https://github.com/wasmi-labs/wasmi/commit/a101c5057ccd47520ba50b196653e7ca192dacf9

Status
Does not occur in 0.36 versions. Fixed for 0.37 versions with cc02394 prior to the release of
v0.37.0.

Note that this bug only occurred mid-development and was never published in a released
version of Wasmi.

Severity
This issue is marked as low severity because:

It only occurs with the multi-value proposal, which is disabled by present-day Soroban.
It is an isolated issue with no indication of broader risk for to the MVP or present-day
Soroban.

64/129

https://github.com/wasmi-labs/wasmi/commit/cc023941ce92f4b8b3a27ce4afd9e465283bd4db

Appendix
This appendix contains additional technical documentation produced during the audit, as well as
an overview of all unsafe Rust code inspected as part of the code review.

65/129

Appendix: Wasmi Instruction Set Overview
Wasmi Instruction Set Description
Source: Wasmi source code wasmi::engine::bytecode::Instruction (v0.36.0)

The instructions of Wasmi byte code are declared and described in the bytecode module. This
is a reorganised overview of all instructions, categorised in a manner similar to how Wasm
instructions are presented in the Wasm specification.

Special purpose instructions - not present in Wasm
Numeric instructions
Vector instructions: None
Reference instructions
Parametric instructions
Variable instructions
Table instructions
Memory instructions
Control instructions

Generally speaking, the Wasmi instruction set contains more variants of the instructions found
in Wasm. These variants are needed because Wasmi uses registers for local variables;
therefore many instruction exists in a variant for immediate values (constants) as well as with
registers. Also, most instructions that manipulate data require source and destination registers
as parameters.

Special-Purpose Instructions

Instruction Parameters for Other Instructions

Const32(value) , I64Const32(value) , and F64Const32(value) are used to provide 32 bit
encoded constants (of type I32 , I64 , or F64 , respectively) to preceeding instructions.

To pass a list of registers (of arbitrary length) to a preceeding instruction, the following
instruction parameters are used:

66/129

https://github.com/wasmi-labs/wasmi/blob/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/mod.rs#L49-L72

In order to provide more than 3 registers, a number of RegisterList instructions is followed by
a final Register , Register2 or Register3 one.

For indexes that refer to tables, data segments, or element segments, there are specialised
instruction parameters:

Copying and Filling Registers

Wasmi requires utility instructions to copy values between registers or write immediate values
into registers.

These instructions typically use a RegisterSpan of contiguous registers as the copy target,
unless it is a single register (r0).

CopySpan and CopyMany also have variants CopySpanNonOverlapping and
CopyManyNonOverlapping . These variants assume that the given target registers are not read

(as source registers) after having been written to, when performing the copy operation in a
forward pass through the spans.

Fuel Consumption (if enabled)

Instruction Contents
Register(r0) 1 register

Register2(r0,r1) 2 registers

Register3(r0,r1,r2) 3 registers

RegisterList(r0,r1,r2) 3 registers, indicating that more registers follow

Instruction Contents
TableIdx(idx) A table index, consisting of 4 8-bit unsigned integral numbers

DataSegmentIdx(idx) A data segment index (32-bit unsigned integral number)

ElementSegmentIdx(idx) A data segment index referring to an element segment

Instruction Description
Copy(r0,r1) copies contents of r1 to r0

Copy2(span,r1,r2) copies r1 and r2 to the given target span

CopyImm32(r0,value) copies immediate 32-bit value to r0

CopyI64Imm32(r0,value) copies immediate 32-bit value to r0 as an I64

CopyF64Imm32(r0,value) copies immediate 32-bit value to r0 as an F64

CopySpan(span,span2,len) copies len values from source span2 to target span

CopyMany(span,[r1,r2])
copies more than 2 registers (2 in instruction, more following) to target
span .

Must be followed by a list of instructions as instruction parameters

67/129

Wasmi supports measuring execution effort by a special instruction ConsumeFuel(fuel) which
carries an unsigned 32-bit BlockFuel integral number, described as a resource measure of
executing a basic block.

Numeric Instructions

As in Wasm, arithmetic and other numeric instructions are grouped by underlying numeric types
(I for integral numbers vs. F for floating-point decimals), as well as by the respective size in
bits (32 or 64 in the instruction set). This numeric type prefix can be I32 , I64 , F32 or F64 .

Likewise, variants for signed or unsigned interpretation of the arguments exist equivalently to
the ones in Wasm (infix S for signed or U for unsigned).

NB the description here is simplified in that it does not consider NaN or Infinity arguments.
The full semantics of the operations on F32 and F64 when applied to NaN or Infinity
values is intended to be the same as in Wasm but not reproduced here.

Comparison instructions take three arguments, commonly registers (denoted r0 , r1 , and
r2 below). The return value is stored in r0 .

I32 and I64 comparisons have variants with Imm16 suffix, which contain an immediate 16-
bit encoded value instead of r2 to serve as the second argument.

where <SIZE> is either 32 or 64 .

Instruction Description

I<SIZE>32Eq(r0,r1,r2)
r0 <- r1 == r2

Variants: I<SIZE>EqImm16(r0,r1,imm)

I<SIZE>32Ne(r0,r1,r2)
r0 <- r1 != r2

Variants: I<SIZE>NeImm16(r0,r1,imm)

I<SIZE>32LtS(r0,r1,r2)
r0 <- r1 < r2 (signed)

Variants: I<SIZE>LtSImm16(r0,r1,imm)

I<SIZE>32LtU(r0,r1,r2) r0 <- r1 < r2 (unsigned)
Variants: I<SIZE>LtUImm16(r0,r1,imm)

I<SIZE>32GtS(r0,r1,r2) r0 <- r1 > r2 (signed)
Variants: I<SIZE>GtSImm16(r0,r1,imm)

I<SIZE>32GtU(r0,r1,r2)
r0 <- r1 > r2 (unsigned)

Variants: I<SIZE>GtUImm16(r0,r1,imm)

I<SIZE>32LeS(r0,r1,r2)
r0 <- r1 <= r2 (signed)

Variants: I<SIZE>LeSImm16(r0,r1,imm)

I<SIZE>32LeU(r0,r1,r2)
r0 <- r1 <= r2 (unsigned)

Variants: I<SIZE>LeUImm16(r0,r1,imm)

I<SIZE>32GeS(r0,r1,r2)
r0 <- r1 >= r2 (signed)

Variants: I<SIZE>GeSImm16(r0,r1,imm)

I<SIZE>32GeU(r0,r1,r2) r0 <- r1 >= r2 (unsigned)
Variants: I<SIZE>GeUImm16(r0,r1,imm)

68/129

For floating point decimals, there are no variants for immediate arguments and no unsigned
interpretation exists. Consequently, there are fewer instructions.

where <SIZE> is either 32 or 64 .

Unary operations take two registers, r0 and r1 , as arguments, and store the return value in
r0 .

where <SIZE> is either 32 or 64 .

where <SIZE> is either 32 or 64 .

Binary Operations take 3 registers arguments, commonly registers (denoted r0 , r1 , and
r2 below). The return value is always stored in r0 .

As for the comparison operations, binary operations for integral numbers come with variants
(with Imm16 suffix) where the register argument r2 is replaced by an immediate 16-bit
encoded value. In addition, the variants with suffix Imm16Rev exist for the non-commutative
operations, which replace the register argument r1 .

Instruction Description
F<SIZE>Eq(r0,r1,r2) r0 <- r1 == r2

F<SIZE>Ne(r0,r1,r2) r0 <- r1 != r2

F<SIZE>Lt(r0,r1,r2) r0 <- r1 < r2

F<SIZE>Le(r0,r1,r2) r0 <- r1 <= r2

F<SIZE>Gt(r0,r1,r2) r0 <- r1 > r2

F<SIZE>Ge(r0,r1,r2) r0 <- r1 >= r2

Instruction Description
I<SIZE>Clz(r0,r1) r0 <- amount of leading zeros in the binary representation of r1

I<SIZE>Ctz(r0,r1) r0 <- amount of trailing zeros in the binary representation of r1

I<SIZE>Popcnt(r0,r1) r0 <- amount of 1 s in the binary representation of r1

Instruction Description (simplified)
F<SIZE>Abs(r0,r1) r0 <- absolute value of FP decimal value in r1

F<SIZE>Neg(r0,r1) r0 <- -r1

F<SIZE>Ceil(r0,r1) r0 <- smallest integral number larger than FP decimal value in r1

F<SIZE>Floor(r0,r1) r0 <- largest integral number smaller than FP decimal value in r1

F<SIZE>Trunc(r0,r1) r0 <- r1 truncated towards zero

F<SIZE>Nearest(r0,r1) r0 <- r1 rounded towards the nearest integral, preferring even numbers

F<SIZE>Sqrt(r0,r1) r0 <- square root of value in r1

69/129

Again, <SIZE> is either 32 or 64 in all tables in this subsection.

There are special fused instructions combining bitwise operations and test whether the result is
zero:

Instruction Description

I<SIZE>Add(r0,r1,r2)
r0 <- r1 + r2

Variants: I<SIZE>AddImm16(r0,r1,imm)

I<SIZE>Sub(r0,r1,r2)
r0 <- r1 - r2

Variants: I<SIZE>SubImm16Rev(r0,r1,imm)

I<SIZE>Mul(r0,r1,r2)
r0 <- r1 * r2

Variants: I<SIZE>MulImm16(r0,r1,imm)

I<SIZE>DivS(r0,r1,r2)
r0 <- r1 / r2 (signed truncated)

Variants: I<SIZE>DivSImm16(r0,r1,imm) ,
I<SIZE>DivSImm16Rev(r0,imm,r2)

I<SIZE>DivU(r0,r1,r2)
r0 <- r1 / r2 (unsigned truncated)

Variants: I<SIZE>DivUImm16(r0,r1,imm) ,
I<SIZE>DivUImm16Rev(r0,imm,r2)

I<SIZE>RemS(r0,r1,r2)
r0 <- r1 % r2 (signed truncated)

Variants: I<SIZE>RemSImm16(r0,r1,imm) ,
I<SIZE>RemSImm16Rev(r0,imm,r2)

I<SIZE>RemU(r0,r1,r2)
r0 <- r1 % r2 (unsigned truncated)

Variants: I<SIZE>RemUImm16(r0,r1,imm) ,
I<SIZE>RemUImm16Rev(r0,imm,r2)

Instruction Description

I<SIZE>And(r0,r1,r2) r0 <- r1 & r2 (bitwise)
Variants: I<SIZE>AndImm16(r0,r1,imm)

I<SIZE>Or(r0,r1,r2)
r0 <- r1 | r2 (bitwise)

Variants: I<SIZE>OrImm16(r0,r1,imm)

I<SIZE>Xor(r0,r1,r2)
r0 <- r1 ^ r2 (bitwise)

Variants: I<SIZE>XorImm16(r0,r1,imm)

Instruction Description

I<SIZE>AndEqz(r0,r1,r2) r0 <- 0 == r1 & r2 (fused & and test)
Variants: I<SIZE>AndEqzImm16(r0,r1,imm)

I<SIZE>OrEqz(r0,r1,r2)
r0 <- 0 == r1 | r2 (fused | and test)

Variants: I<SIZE>OrEqzImm16(r0,r1,imm)

I<SIZE>XorEqz(r0,r1,r2)
r0 <- 0 == r1 ^ r2 (fused ^ and test)

Variants: I<SIZE>XorEqzImm16(r0,r1,imm)

70/129

Conversions between numeric types follow the respective Wasm instruction set.

where <N> is 32 or 64, <M> is 8, 16, or 32, and <N> > <M> .

Instruction Description

I<SIZE>Shl(r0,r1,r2) r0 <- r1 << r2 (logical)
Variants: I<SIZE>ShlImm(r0,r1,imm) , I<SIZE>ShlImm16Rev(r0,imm,r2)

I<SIZE>ShrU(r0,r1,r2)
r0 <- r1 >> r2 (logical unsigned)

Variants: I<SIZE>ShrUImm(r0,r1,imm) ,
I<SIZE>ShrUImm16Rev(r0,imm,r2)

I<SIZE>ShrS(r0,r1,r2)
r0 <- r1 >> r2 (logical signed)

Variants: I<SIZE>ShrSImm(r0,r1,imm) ,
I<SIZE>ShrSImm16Rev(r0,imm,r2)

I<SIZE>Rotl(r0,r1,r2)
r0 <- bits of r1 rotated left by r2 mod <SIZE>

Variants: I<SIZE>RotlImm(r0,r1,imm) ,
I<SIZE>RotlImm16Rev(r0,imm,r2)

I<SIZE>Rotr(r0,r1,r2)
r0 <- bits of r1 rotated right by r2 mod <SIZE>

Variants: I<SIZE>RotrImm(r0,r1,imm) ,
I<SIZE>RotrImm16Rev(r0,imm,r2)

Instruction Description
F<SIZE>Add(r0,r1,r2) r0 <- r1 + r2

F<SIZE>Sub(r0,r1,r2) r0 <- r1 - r2

F<SIZE>Mul(r0,r1,r2) r0 <- r1 * r2

F<SIZE>Div(r0,r1,r2) r0 <- r1 / r2

F<SIZE>Min(r0,r1,r2) r0 <- if r1 < r2 then r1 else r2

F<SIZE>Max(r0,r1,r2) r0 <- if r1 < r2 then r2 else r1

F<SIZE>Copysign(r0,r1,r2)
r0 <- if sgn(r1) == sgn(r2) then r1 else r1 * (-1)

Variant: F<SIZE>CopysignImm(r0,r1,sign)

Instruction Description
I32WrapI64(r0,r1,r2) r0 <- r1 mod 2^32

I64ExtendI32S(r0,r1,r2) r0 <- r1 sign-extended to 64 bit

I64ExtendI32U(r0,r1,r2) r0 <- r1 extended to 64 bit (prefixing zeros, no sign)

I<N>Extend<M>S(r0,r1,r2) r0 <- r1 sign-extended to <N> bits
from Wasm "sign-extension" proposal

Instruction Description (simplified)
I<N>TruncF<M>S(r0,r1,r2) r0 <- trunc(r1) if in range [-2^(<N>-1)..2^(<N>-1) - 1]

I<N>TruncF<M>U(r0,r1,r2) r0 <- trunc(r1) if in range [0..2^<N>-1]

F<N>ConvertI<M>S(r0,r1,r2) r0 <- float(r1) (as defined in Wasm)

F<N>ConvertI<M>U(r0,r1,r2) r0 <- float(signed(r1)) (as defined in Wasm)

I<N>TruncSatF<M>S(r0,r1,r2) as I<N>TruncF<M>S but returns 0 for NaN and max/min value for infinity
from Wasm "non-trapping float-to-int conversions" proposal

I<N>TruncSatF<M>U(r0,r1,r2) as I<N>TruncF<M>U but returns 0 for NaN and max/min value for infinity
from Wasm "non-trapping float-to-int conversions" proposal

71/129

where <N> and <M> are 32 or 64.

Reference Instructions

Producing a function reference works as in Wasm:

No null check exists for function references, as there is no stack (the value to check will be in
a register).

Parametric Instructions

The Wasm drop instruction does not exist because no stack is managed. The select
instruction exists in several variants which each require to appear in a certain context (of
instruction parameters following).

A register or constant value must follow as a separate instruction parameter for the following
two variants:

For the Imm variants, the respective select instruction must appear pairwise, with two
arguments each: one register argument r0 , and one immediate argument imm . The
arguments are indexed by instruction 1 or 2 below.

Variable Instructions

Instruction Description
F32DemoteF64(r0,r1,r2) Double to Float conversion (maybe infinity)

F64PromoteF32(r0,r1,r2) Float to Double extension (identical value)

Instruction Description
RefFunc(r0,r1) r0 <- ref r1

Instruction Description

Select(r0,r1,r2)
r0 <- if r1 then r2 else <NEXT>

A Register or Const instruction parameter providing <NEXT> must follow

SelectRev(r0,r1,r2)
r0 <- if r1 then <NEXT> else r2

A Register or Const instruction parameter providing <NEXT> must follow

Instruction Description

SelectImm32(r0,imm)
r0(1) <- if r0(2) then imm(1) else imm(2)
imm(_) are immediate 32-bit integers.

SelectI64Imm32(r0,imm) r0(1) <- if r0(2) then imm(1) else imm(2)
imm(_) are immediate 64-bit integers that fit into 32 bit.

SelectF64Imm32(r0,imm) r0(1) <- if r0(2) then imm(1) else imm(2)
imm(_) are immediate 64-bit floats that fit into 32 bit.

72/129

In Wasmi, local variables are held in registers. Therefore, get and set for variables only
apply to global variables (of initialised modules).

Table Instructions

In comparison to Wasm, the Wasmi table element access instructions are similar but require
the table index to be provided in a subsequent instruction parameter.

TableGetImm and TableSetAt contain an immediate index idx , while TableGet and
TableSet provide the index in a register argument.

There are a number of variants for copying, filling, and initialising tables.

TableCopy* instructions copy data between tables. All variants use three arguments dst ,
src , and len and additional instruction parameters for destination and source of the copy.

They vary in whether arguments are registers or constant (16-bit encoded) values.

Instruction Description
GlobalGet(r0,r1) r0 <- value of global variable at r1

GlobalSet(r0,r1) Set global variable at r0 to value in r1
Variants: GlobalSetI32Imm16(r0,imm) , GlobalSetI64Imm16(r0,imm)

Instruction Description

TableGet(r0,r1)
reads table tidx at index in r1 into r0
An instruction parameter TableIdx tidx must follow

TableGetImm(r0,idx)
reads table tidx at index idx into r0
An instruction parameter TableIdx tidx must follow

TableSet(r0,r1) writes value in r1 into table tidx at index in r0
An instruction parameter TableIdx tidx must follow

TableSetAt(idx,r1) writes value in r1 into table tidx at index idx
An instruction parameter TableIdx tidx must follow

TableSize(r0,tidx) stores size of table tidx in r0

73/129

As in Wasm, TableInit* instructions copy data from an element segment to a table. Like
TableCopy , all TableInit* instructions have dst , src , and len arguments and differ in

which ones are provided as registers or as (16-bit encoded) constants. TableInit*
instructions require a destination TableIdx and a source ElementIdx instruction parameter to
follow.

Instruction Description

TableCopy(r0,r1,r2)

copies *r2 (len) many values from table srcTidx starting at index in r1
to table destTidx starting at index in r0
Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyTo(dst,r1,r2)

copies *r2 (len) many values from table srcTidx starting at index in r1
to table destTidx starting at index dst
Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFrom(r0,src,r2)

copies *r2 (len) many values from table srcTidx starting at index src to
table destTidx starting at index in r0
Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromTo(dst,src,r2)

copies *r2 (len) many values from table srcTidx starting at index src to
table destTidx starting at index dst
Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyExact(r0,r1,len)

copies len many values from table srcTidx starting at index in r1 to
table destTidx starting at index in r0
Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyToExact(dst,r1,len)

copies len values from table srcTidx starting at index in r1 to table
destTidx starting at index dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromExact(r0,src,len)

copies len values from table srcTidx starting at index src to table
destTidx starting at index in r0

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

TableCopyFromToExact(dst,src,len)

copies len values from table srcTidx starting at index src to table
destTidx starting at index dst

Two TableIdx instruction parameters for destTidx and srcTidx must
follow

74/129

TableFill instructions use arguments dst , len , and value . The value to fill in is always
provided in a register, while dst and len may be either from registers or as constants. Again,
a TableIdx must follow to indicate the table to modify.

The TableGrow instructions enlarge a table and return the old table size (or -1) in the first
argument register (r0). The size to grow by is either from argument register r1 or immediate,
the value to fill new cells with is provided in register r2 .

Instruction Description

TableInit(r0,r1,r2)
copies *r2 (len) many values from segment srcEidx starting at index in
r1 to table destTidx starting at index in r0

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitTo(dst,r1,r2)
copies *r2 (len) many values from segment srcEidx starting at index in
r1 to table destTidx starting at index dst

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitFrom(r0,src,r2)
copies *r2 (len) many values from segment srcEidx starting at index
src to table destTidx starting at index in r0

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitFromTo(dst,src,r2)
copies *r2 (len) many values from segment srcEidx starting at index
src to table destTidx starting at index dst

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitExact(r0,r1,len)
copies len many values from segment srcEidx starting at index in r1 to
table destTidx starting at index in r0
A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitToExact(dst,r1,len)
copies len values from segment srcEidx starting at index in r1 to table
destTidx starting at index dst

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitFromExact(r0,src,len)
copies len values from segment srcEidx starting at index src to table
destTidx starting at index in r0

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

TableInitFromToExact(dst,src,len)
copies len values from segment srcEidx starting at index src to table
destTidx starting at index dst

A TableIdx destTidx and an ElementIdx srcEIdx instruction must follow

Instruction Description

TableFill(r0,r1,r2)
writes value in r2 *r1 (len) many times into table tidx , starting at index
in r0
A TableIdx tidx instruction parameter must follow

TableFillAt(dst,r1,r2)
writes value in r2 *r1 (len) many times into table tidx , starting at index
dst

A TableIdx tidx instruction parameter must follow

TableFillExact(r0,len,r2)
writes value in r2 len many times into table tidx , starting at index in
r0

A TableIdx tidx instruction parameter must follow

TableFillAtExact(dst,len,r2)
writes value in r2 len many times into table tidx , starting at index dst
A TableIdx tidx instruction parameter must follow

75/129

In Wasm, element segments in a module may be dropped to prevent further use (as a hint for
possible optimisations). Correspondingly, Wasmi provides an instruction ElemDrop which
carries an element/data segment index and discards the indicated segment.

Memory Instructions

Load instructions access memory at a given offset and load bytes representing a value of the
target type (I32 , I64 , F32 , F64) into the argument register (here r0). The 2nd argument
may be a register (in which case a Const32 instruction must follow to provide an offset value),
or a constant offset. In the Offset16 variant, a 3rd argument provides a constant offset which
must be representable in 16 bits, from a register (2nd argument).

where <TYPE> is I32 , I64 , F32 , or F64 .

For I32 and I64 loads, additional instructions (equivalent to the ones in Wasm) exist to load
fewer bytes and extend the value's bit pattern appropriately (unsigned or signed as per u or s
after <M>).

where <N> is 32 or 64, and <M> is 8, 16, or 32 (if <N> is 64).

Instruction Description

TableGrow(r0,r1,r2)
Enlarges table tidx by size in r1 , filling with value from r2 . Returns
previous size in r0 (or -1 on errors)
A TableIdx tidx instruction parameter must follow

TableGrowImm(r0,sz,r2)
Enlarges table tidx by sz , filling with value from r2 . Returns previous
size in r0 (or -1 on errors)
A TableIdx tidx instruction parameter must follow

Instruction Description

<TYPE>Load(r0,r1) r0 <- value loaded from r1 + <offset>
A Const32 <offset> instruction parameter must follow

<TYPE>LoadAt(r0,offset) r0 <- value loaded from given offset (2nd arg.)

<TYPE>LoadOffset16(r0,r1, offset) r0 <- value loaded from r1 + offset (2nd/3rd arg.)

Instruction Description

I<N>Load<M>u
as above, but reading <M> bits
A Const32 <offset> instruction parameter must follow

I<N>Load<M>s
as above, but reading <M> bits, sign-extending
A Const32 <offset> instruction parameter must follow

I<N>Load<M>uAt as above, but reading <M> bits

I<N>Load<M>sAt as above, but reading <M> bits, sign-extending

I<N>Load<M>uOffset16 as above, but reading <M> bits

I<N>Load<M>sOffset16 as above, but reading <M> bits, sign-extending

76/129

For Store instructions, the two arguments r0 and offset define the place to store. There
are 5 variants that differ in:

how the stored value is specified:
either in a following Register instruction parameter,
or as a register within the same instruction (limiting the size of offset to 16 bit)
or as a 16-bit encoded value within the same instruction (limiting the size of offset
to 16 bit).

whether the target address is constant
the target address can be in a register, combined with a given offset,
or given as a constant (in the for StoreAt variants).

where <TYPE> is I32 , I64 , F32 , or F64 .

For the integral types, there are variants for storing smaller values (of 8 or 16 bit width for I32
and 8, 16, or 32 bit width for I64), each with similar variants as the ones described above.

where <N> is 32 or 64, and <M> is 8, 16, or 32 (if <N> is 64).

Store instructions for floating-point decimals come in similar variants but without the immediate
value variants.

Instruction Description

<TYPE>Store(r0,offset) store value in r1 at address r0 + <offset>
A Register <r1> instruction parameter must follow

<TYPE>StoreOffset16(r0,r1,offset) store value in r1 at address r0 + <offset>

<TYPE>StoreOffset16Imm16(r0,value,offset) store value at address r0 + offset

<TYPE>StoreAt(addr,reg) store value from reg at addr

<TYPE>StoreAtImm16(addr,value) store value at addr

Instruction Description

I<N>Store<M>(r0,offset) as above, but truncating the value to bits
A Register r instruction parameter must follow

I<N>Store<M>Offset16(r0,r1,offset) as above, but truncating the value to bits

I<N>Store<M>Offset16Imm16(r0,value,offset) as above, but truncating the value to bits

I<N>Store<M>At(addr,reg) as above, but truncating the value to bits

I<N>Store<M>AtImm16(addr, value) as above, but truncating the value to bits

77/129

where <N> is 32 or 64.

Memory management and initialisation instructions in Wasmi have different variants
according to how the arguments are provided (in registers or as immediate values). No
instruction parameters are required because Wasm (currently) limits each module's memories to
exactly one.

Instruction Description

F<N>Store(r0,offset) store value in r1 at address r0 + <offset>
A Register <r1> instruction parameter must follow

F<N>StoreOffset16(r0,r1,offset) store value in r1 at address r0 + <offset>
The offset is small (16 bit)

F<N>StoreAt(addr, r1) store value in r1 at addr

Instruction Description
MemorySize(r0) r0 <- current size of memory (in 64K pages)

MemoryGrow(r0,r1) grow memory by size in r1 , return old size in r0

MemoryGrowBy(r0,sz) grow memory by sz , return old size in r0

Instruction Description

MemoryCopy(r0,r1,r2) copies len bytes from mem[src..] to mem[dst..]
len in r2 , src in r1 , dst in r0

MemoryCopyTo(dst,r1,r2) copies len bytes from mem[src..] to mem[dst..]
len in r2 , src in r1

MemoryCopyFrom(r0,src,r2)
copies len bytes from mem[src..] to mem[dst..]
len in r2 , dst in r0

MemoryCopyFromTo(dst,src,r2)
copies len bytes from mem[src..] to mem[dst..]
len in r2

MemoryCopyExact(r0,r1,len)
copies len bytes from mem[src..] to mem[dst..]
src in r1 , dst in r0

MemoryCopyToExact(dst,r1,len)
copies len bytes from mem[src..] to mem[dst..]
src in r1

MemoryCopyFromExact(r0,src,len) copies len bytes from mem[src..] to mem[dst..]
dst in r0

MemoryCopyFromToExact(dst,src,len) copies len bytes from mem[src..] to mem[dst..]

78/129

The MemoryInit family of instructions copy data from a given data segment to memory,
therefore a DataSegmentIdx must follow to indicate which segment to use.

Instruction Description

MemoryFill(r0,r1,r2) writes 8-bit val into mem[dst..dst+len]
val in r1 , len in r2 , dst in r0

MemoryFillAt(dst,r1,r2)
writes 8-bit val into mem[dst..dst+len]
val in r1 , len in r2

MemoryFillImm(r0,val,r2)
writes 8-bit val into mem[dst..dst+len]
len in r2 , dst in r0

MemoryFillExact(r0,r1,len)
writes 8-bit val into mem[dst..dst+len]
val in r1 , dst in r0

MemoryFillAtImm(dst,val,r2)
writes 8-bit val into mem[dst..dst+len]
len in r2

MemoryFillAtExact(dst,r1,len) writes 8-bit val into mem[dst..dst+len]
val in r1

MemoryFillImmExact(r0,val,len) writes 8-bit val into mem[dst..dst+len]
val in r1 , len in r2

MemoryFillAtImmExact(dst,val,len) writes 8-bit val into mem[dst..dst+len]

Instruction Description

MemoryInit(r0,r1,r2)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
dst in r0 , src in r1 , len in r2

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitTo(dst,r1,r2)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
src in r1 , len in r2

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitFrom(r0,src,r2)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
dst in r0 , len in r2

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitFromTo(dst,src,r2)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
len in r2

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitExact(r0,r1,len)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
dst in r0 , src in r1

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitToExact(dst,r1,len)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
src in r1

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitFromExact(r0,src,len)

for data segment index dseg , copies data[dseg][src..src+len] to
mem[dst..dst+len]
dst in r0

A DataSegmentIdx dseg instruction parameter must follow

MemoryInitFromToExact(dst,src,len)
for data segment index dseg , copies data[dseg] [src..src+len] to
mem[dst..dst+len]

a DataSegmentIdx dseg instruction parameter must follow

79/129

As in Wasm, data segments can be dropped to prevent further access (enabling optimisations)
using the Wasmi instruction DataDrop , which carries a data segment index.

Control Instructions

The Trap instruction does what its name suggests: Execution fails with the given "trap code"
indicating an error condition.

A wide variety of branching instructions exist in the Wasmi instruction set. A common trait to
all of them is that they operate using an offset from the current instruction pointer (IP) rather
than the nesting levels that Wasm uses in its respective br instruction.

Many branch instructions were added to combine certain tests with a subsequent conditional
branch on the result. Each of these instructions has either two argument registers and one (16-
bit) offset , or one argument register, one (16-bit-encoded) immedate value argument, and
one (16-bit) offset .

where <TYPE> and <OP> are a type and a binary operation from the table below:

Instruction Description
Branch(offset) modifies instruction pointer by adding offset

Instruction Description
Branch<TYPE><OP>(r0,r1,offset) adds offset to IP if r0 <OP> r1

Branch<TYPE><OP>Imm(r0,val,offset) adds offset to IP if r0 <OP> val

80/129

(Note the absense of And , Or , and Xor variants for I64).

For floating-point decimals, there are no immediate variants (and no signedness).

All these instructions rely on a special encoding with a 16-bit offset.

For cases where the offset is too large to be encoded as a 16-bit value, a generic fall-back
instruction exists, which encodes the offset (32-bit) and the operation to perform as a special
combined param (eter), read from a third argument register (r2) of the instruction.

OP Description Types
And bit-wise & I32

Or bit-wise | I32

Xor bit-wise ^ (xor) I32

AndEqz bit-wise & followed by comparing to zero I32

OrEqz bit-wise | followed by comparing to zero I32

XorEqz bit-wise ^ followed by comparing to zero I32

Eq == unsigned I32 , I64

Ne != unsigned I32 , I64

LtS < signed I32 , I64

LtU < unsigned I32 , I64

LeS <= signed I32 , I64

LeU <= unsigned I32 , I64

GtS > signed I32 , I64

GtU > unsigned I32 , I64

GeS >= signed I32 , I64

GeU >= unsigned I32 , I64

Instruction Description
Branch<TYPE><OP>(r0,r1,offset) adds offset to IP if r0 <OP> r1

OP Description Types
Eq == F32 , F64

Ne != F32 , F64

Lt < F32 , F64

Le <= F32 , F64

Gt > F32 , F64

Ge >= F32 , F64

Instruction Description

BranchCmpFallback(r0,r1,r2)
adds offset to IP if r0 <OP> r1
offset and <OP> read from a parameter param passed in a third register

argument

81/129

For multi-target branches, (Wasm instruction br_table), Wasmi uses the BranchTable
instruction. This instruction in Wasmi contains the scrutinee register and the length of the
branch table as arguments, and expects the respective following instructions (after an optional
Copy* instruction) to be Branch or Return* instructions that constitute the branch table

(appropriate amount indicated by the length, including the default).

All function call instructions Call* have a register span results (of unknown length) to
indicate where the function results should be stored. Functions are either referred-to by their
function index func , or called indirectly through a table, indicating the function type by an index
func_type into the surrounding module's known types. Wasmi distinguishes internal functions

from imported ones, and uses special Call* variants (suffixed with 0) for functions without
arguments. If arguments are required, they are passed as a register list that follows the Call*
instruction.

The indirect call uses the following instruction parameters to supply the table and index for the
indirect call:

For tail-call optimisation, there are special ReturnCall* variants corresponding to the above
instructions, which reuse the prior function call's results registers:

Instruction Description

BranchTable(index,len_targets)

selects branch/return instruction indicated by value in index register, from
len_targets branch or return instructions that follow

Next len_targets instructions expected to be Branch or Return*
(includes default if index value out of range).

Instruction Description
CallInternal0(results,func) Calls an internal function (by index func) without arguments

CallInternal(results,func) Calls an internal function (by index func)
Followed by a register list for the arguments

CallImported0(results,func) Calls an imported function without arguments

CallImported(results,func) Calls an imported function (by index func)
Followed by a register list for the arguments

CallIndirect0(results, func_type) Calls a function indirectly through a table, without arguments.
Followed by CallIndirectParams (or Imm16 variant)

CallIndirect(results, func_type)
Calls an function indirectly through a table.
Followed by CallIndirectParams (or Imm16 variant), and a register list for
the arguments

Instruction Description
CallIndirectParams(tIdx, reg) holds a table index tIdx and a register reg containing an index

CallIndirectParamsImm16(tIdx,index) holds a table index tIdx and a 16-bit index

82/129

For returning from function calls, variants exist to return a number of immediate values or
registers.

A special conditional return instruction (with the same variants as above) exists, which only
returns if a given condition register contains a non-zero value.

Note the absense of a variant with 3 registers (one register is needed for the r0).

Instruction Description
ReturnCallInternal0(func) tail-call internal function (by index func) without arg.s

ReturnCallInternal(func) tail-call internal function (by index func).
Followed by a register list for the arguments

ReturnCallImported0(func) tail-call imported function (by index func) without arg.s

ReturnCallImported(func) tail-call imported function (by index func).
Followed by a register list for the arguments

ReturnCallIndirect0(func_type) tail-call a function from a table without arg.s.
Followed by CallIndirectParams (or ~Imm16 variant)

ReturnCallIndirect(func_type)
tail-call a function from a table.
Followed by CallIndirectParams (or ~Imm16 variant) and then a register
list for the arg.s

Instruction Description
Return Returns from a function without return value

ReturnReg(r0) Returns value in register r0

ReturnReg2([r0,r1]) Returns values in registers r0 and r1

ReturnReg3([r0,r1,r2]) Returns values in registers r0 , r1 , and r2

ReturnImm32(value) Returns an immediate I32 constant value

ReturnI64Imm32(value) Returns an immediate I64 constant value encoded in 32 bit

ReturnF64Imm32(value) Returns an immediate F64 constant value encoded in 32 bit

ReturnSpan(iter) Returns more than 3 registers, given as a register span iterator iter

ReturnMany(r0,r1,r2) Returns more than 3 registers, r0 , r1 , r2 , and the ones from a following
register list

Instruction Description
ReturnNez(r0) If r0 contains non-zero, returns from a function without return value

ReturnNezReg(r0,r1) If r0 contains non-zero, returns value in r1

ReturnNezReg2(r0,r1,r2) If r0 contains non-zero, returns values in registers r0 and r1

ReturnNezImm32(r0,val) If r0 contains non-zero, returns an immediate I32``constant val`

ReturnNezI64Imm32(r0,val) If r0 contains non-zero, returns an immediate I64 val encoded in 32 bit

ReturnNezF64Imm32(r0,val) If r0 contains non-zero, returns an immediate F64 val encoded in 32 bit

ReturnNezSpan(r0,iter)
If r0 contains non-zero, returns more than 2 registers, given as an iterator
iter

ReturnNezMany(r0,[r1,r2]) If r0 contains non-zero, returns more than 2 registers, r1 , r2 , and the
ones following in a register list

83/129

Appendix: Engine Class Diagrams

84/129

85/129

86/129

87/129

Appendix: FuncTranslator Class Diagrams

88/129

89/129

90/129

91/129

92/129

93/129

Appendix: Translation Sequence Diagrams

94/129

User

Module Parsing, Validation and Translation:
Overview

config:
Config

Config { ... }

engine:
Engine

Engine::new(config)

module:
Module

Module::new(engine, wasm)

parser:
ModuleParser

wasm_parser:
WasmParser

WasmParser::new(0)

parse_buffered(wasm)

features: WasmFeatures

validator:
Validator

Validator::new_with_features(features)

parse_buffered_impl(wasm)

parse_buffered_header(wasm, custom_sections: CustomSectionsBuilder)

header: ModuleHeader

parse_buffered_code(wasm, header, custom_sections)

module_builder: ModuleBuilder

parse_buffered_data(wasm, module_builder)

module: Module

module

module

module

95/129

User

config:
Config

parser:
ModuleParser

wasm_parser:
WasmParser

validator:
Validator

Module Parsing, Validation and Translation:
1. Header Parsing

parse_buffered_header(wasm, custom_sections: CustomSectionsBuilder)

header_builder:
ModuleHeaderBuilder

ModuleHeaderBuilder::new(engine)

next_payload()

parse(wasm, true)

consumed, payload

consumed, payload

process_types(section, header_builder)

type_section(section)

get_enforced_limits()

limits: EnforcedLimits

parse next; check limits; transform; append to func_types

push_func_types(func_types)

consume_buffer(consumed, wasm)

finish()

header: ModuleHeader

header

loop [until code section / data section / end]

alt [payload is TypeSection(section)]

[payload is ...]

loop [until end of section]

96/129

User

engine:
Engine

parser:
ModuleParser

wasm_parser:
WasmParser

validator:
Validator

Module Parsing, Validation and Translation:
2. Code Parsing

parse_buffered_code(wasm, header, custom_sections)

next_payload()

parse(wasm, true)

consumed, payload

consumed, payload

consume_buffer(consumed, wasm)

bytes

process_code_entry(func_body, bytes, header)

next_func(header)

func_idx, engine_func

code_section_entry(func_body)

func_to_validate: FuncToValidate

translate_func(func_idx, engine_func, ..., bytes, header, func_to_validate)

module_builder:
ModuleBuilder

ModuleBuilder::new(header, custom_sections)

module_builder

loop

97/129

User

config:
Config

parser:
ModuleParser

wasm_parser:
WasmParser

validator:
Validator

module_builder:
ModuleBuilder

Module Parsing, Validation and Translation:
3. Data Parsing

parse_buffered_data(wasm, module_builder)

next_payload()

parse(wasm, true)

consumed, payload

consumed, payload

process_data(section, module_builder)

get_enforced_limits()

limits: EnforcedLimits

check limits

data_section(section)

reserve_data_segments(section.count())

parse

push_data_segment(segment)

consume_buffer(consumed, wasm)

finish()

module: Module

module

loop [until end]

alt [payload is DataSection(section)]

[...]

loop [until end of section]

98/129

User

engine:
Engine

func_to_validate:
FuncToValidate

Function Parsing, Validation and Translation [CompilationMode::Eager]:
Overview

translate_func(
 func_index,
 engine_func,
 offset,
 bytes,
 module_header,
 Some(func_to_validate,
)

config.get_compilation_mode()

CompilationMode::Eager

inner.get_allocs()

translation_allocs, validation_allocs

into_validator(validation_allocs)

validator:
FuncValidator

FuncValidator { ... }

validator

translator:
FuncTranslator

FuncTranslator::new(func_index, module_header, translation_allocs)

validating_translator:
ValidatingFuncTranslator

ValidatingFuncTranslator::new(validator, translator)

driver:
FuncTranslationDriver

FuncTranslationDriver::new(offset, bytes, validating_translator)

function_body:
FunctionBody

FunctionBody::new(offset, bytes)

translate(finalize = func_entity -> inner.init_func(engine_func, func_entity))

translate_locals()

translate_operators()

offset

finish(offset, finalize)

allocs

allocs

inner.recylce_allocs(allocs)

99/129

User

validator:
FuncValidator

translator:
FuncTranslator

validating_translator:
ValidatingFuncTranslator

driver:
FuncTranslationDriver

function_body:
FunctionBody

Function Parsing, Validation and Translation [CompilationMode::Eager]:
1. Local Translation

translate_locals()

get_locals_reader()

locals_reader:
LocalsReader

LocalsReader { ... }

locals_reader

original_position()

offset

update_pos(offset)

read()

amount, value_type

translate_locals(amount, value_type)

define_locals(..., amount, value_type)

translate_locals(amount, value_type)

alloc.stack.register_locals(amount)

finish_translate_locals()

finish_translate_locals()

alloc.stack.finish_register_locals()

loop [locals]

100/129

User

validator:
FuncValidator

translator:
FuncTranslator

validating_translator:
ValidatingFuncTranslator

driver:
FuncTranslationDriver

function_body:
FunctionBody

Function Parsing, Validation and Translation [CompilationMode::Eager]:
Operator Translation

translate_operators()

get_operators_reader()

skip_locals(...)

operators_reader:
OperatorsReader

OperatorsReader { ... }

operators_reader

original_position()

offset

update_pos(offset)

visit_operator(validating_translator)

read_u8():

OPCODE

read_ARG():

ARG_i

visit_OPCODE(..., ARG_i,...)

validate_then_translate()

visitor.visit_OPCODE(..., ARG_i,...)

visit_OPCODE(..., ARG_i,...)

ensure_end()

original_position()

offset

offset

loop [until eof]

loop [args]

101/129

User

driver:
FuncTranslationDriver

validating_translator:
ValidatingFuncTranslator

translator:
FuncTranslator

engine:
Engine

Function Parsing, Validation and Translation [CompilationMode::Eager]:
Finalization

finish(offset, finalize)

update_pos(offset)

finish(finalize)

finish(finalize)

alloc.instr_encoder.defrag_registers(alloc.stack)

alloc.instr_encoder.update_branch_offsets(alloc.stack)

alloc.instr_encoder.drain_instrs()

instrs

into_allocations

translation_allocs

finalize: init_func(
 enginge_func,
 func_entity=CompiledFuncEntity::new(..., intstrs, ...),
)

inner.code_map.init_func_as_compiled(
 engine_func,
 func_entity,
)

translation_allocs

allocs

allocs

102/129

Appendix: Algorithmic Description of the
Translator
Control Instructions

nop

Nothing to do.

unreachable

1. If the instruction is unreachable, return.
2. Else, encode a trap instruction.
3. Set reachability to false.

block

1. If the instruction is unreachable, push the control stack to track the scope of the block, then
return.

2. Preserve all local variables: replace all local registers on the value stack by a preservation
register allocated for the given local, and encode copy* instructions that copy locals to
their preservations.

3. Create new label for the end of the block.
4. Allocate new dynamic registers for the block parameters and results.
5. Push the control stack.

loop

1. If the instruction is unreachable, push the control stack to track the scope of the block, then
return.

2. Preserve all local variables.
3. Push dynamic registers for block parameters.
4. Encode copy instructions for the arguments.
5. Create new label for the head of the loop, then pin it.
6. Push the control stack.

103/129

if

1. If the instruction is unreachable, push the control stack to track the scope of the block, then
return.

2. Preserve all local variables.
3. Create new label for the end of the if-else-end (or if-end).
4. Allocate new dynamic registers for the block parameters and results.
5. Process the condition.

If the condition is a constant, then only one of the branches is deemed reachable
(IfReachability), administer which one.
If only the else is deemed reachable, set reachability to false.
Otherwise, the condition is a register, and both branches are deemed reachable.

1. Store the input parameters for processing in the else branch.
2. Ensure that preservation registers are kept for the else branch.
3. Create a new label for the else branch.
4. Encode the branch instruction.

6. Push the control stack.

else

1. Pop the control stack.
If the frame belongs to an unreachable if instruction, then the else block is also
unreachable.
Push the control stack to track the scope of the block, then return.

2. Administer that the else block has been visited. This indicates that the control frame is
if-else-end and not if-end .

3. If the then branch was deemed reachable, administer the reachability of the end of the
then block. This is important so that the reachability of the whole if can be established

upon visiting the corresponding end instruction.
4. If the else branch was deemed reachable, and there is an associated label for it, it means

that both both branches were deemed reachable.
1. If the end of the then block was reachable, encode copy instructions for the then

branch result, and encode the jump to the end of the if .

104/129

2. Set reachability to true.
3. Pin the else label.
4. Restore input parameters.

5. Set reachability based on which of the branches were deemed reachable.
The case for none of the branches is not possible.
The case for both branches has already been handled.
If only the else branch has been deemed reachable, then reachability is set to false.
Set it to true.
If only the then branch has been deemed reachable, set reachability to false.

6. Push the control stack.

end

Pop the control stack. There are four cases based on the control frame.

end of an unreachable block

Nothing to do.

end of a loop

Nothing to do.

end of a block

1. If the control stack is empty, that means the end corresponds to the top-level function call.
Encode the return instruction.

2. If the end of the block is reachable and is branched to, encode copy instructions for the
block results.

3. Pin the block label.
4. If the block is branched to, push the result registers onto the value stack.
5. Set reachability to true if the current instruction is reachable or the block is branched to.

end of an if

There are five cases.

Case 1: No branches deemed reachable

This case is not possible.

105/129

Case 2: Both branches deemed reachable, else block exists

1. Compute reachability of the code following the if-else-end , based on the reachability of
the end of the branches and whether the block has been branched to.

2. Pin the else label.
3. If the end of the else is reachable, encode copy instructions for the else branch result,
4. Pin the end label.
5. If the code following the if-else-end is reachable, push result registers onto the value

stack.

Case 3: Both branches deemed reachable, else block missing

1. If the end of the then branch is reachable and the branch produced results, encode copy
instructions for the then branch result, and encode the jump to the end of the if .

2. Pin the else label.
3. Pop the input parameters previously stored for the else branch.
4. If the block produces results, encode copies from those parameters to the output registers.
5. Pin the end label.
6. Push the result registers onto the value stack.
7. Set reachability to true.

Case 4: Only then deemed reachable

1. Compute reachability of the end of the then branch.
This value is already set iff the else branch has been visited.
Otherwise, its the reachability of the current instruction.

2. If the end of the then is reachable and the block has been branched to,
encode copy instructions for the then branch result.

3. Pin the end label.
4. If the block has been branched to, push the output registers to the value stack.
5. Compute reachability of the code following the if-else-end , based on the reachability of

the end of the then and whether the block has been branched to.

Case 5: Only else deemed reachable

This is symmetric to the previous case, the only difference being in how the reachability of the
end of the block is computed:

106/129

It is reachable if the current instruction is reachable, or the else has never been visited
(i.e. it is an if-end instruction).

br

1. If the instruction is unreachable, return.
2. If the branch target is the top-level frame, encode a return instruction, then return.
3. Otherwise, increment the number of branches for the given frame.
4. Encode copy instructions for the target branch parameters (i.e. inputs for a loop frame,

outputs otherwise).
5. Resolve the target frame's label.
6. Encode the branch instruction with the resolved offset.
7. Set reachability to false.

br_if

1. If the instruction is unreachable, return.
2. Pop the value stack for the condition.

If the value is zero, return.
If it is a non-zero constant, translate the instruction as br .
Otherwise, the value is a register, continue below.

3. If the branch target is the top-level frame, encode a return_nez instruction, then return.
4. Otherwise, increment the number of branches for the given frame.
5. If the target frame has no branch parameters, encode a branch_nez instruction, fusing

with the previous instruction if possible.
6. Do the same if the values on top of the stack are already the branch parameters of the

target branch.
7. Otherwise, create a new label, say, L_skip .
8. Encode a branch_eqz instruction to L_skip , fusing with the previous instruction if

possible.
9. Encode copy instructions for the target branch parameters.

10. Resolve the target frame's label.
11. Encode the branch instruction with the resolved offset.
12. Pin L_skip .

107/129

br_table

1. If the instruction is unreachable, return.
2. Pop the value stack for the branch index.
3. If the instruction only has a default target, translate it as a br to the default target.
4. If the branch index is a constant, translate the instruction as a br to the given target.
5. If the target branches do not have branch parameters, then

Encode a branch_table instruction.
For each of the targets:

If it is the top-level frame, encode return .
Otherwise, resolve the corresponding label, bump branches to the frame and
encode a branch with the resolved offset.

Set reachability to false.

6. Otherwise, for each unique branch target, introduce a label, say, L_i .
7. For each branch target, encode a branch to the corresponding L_i .
8. Pop a number of values from the value stack equal to the number of branch parameters.
9. For each L_i :

If L_i corresponds to the top-level frame, encode a return with the values.
Otherwise:

Pin L_i .
Bump the number of branches to the target frame.
Encode copies from the values to the branch parameters.
Encode a branch to the actual target.

10. Set reachability to false.

return

Pop the value stack the right number of types and encode a return instruction with the values.

call

1. If the instruction is unreachable, return.

108/129

2. Pop a number of values from the value stack equal to the number of parameters of the
called function.

3. Allocate a register span for the results.
4. Based on whether the function is internal or imported, encode a call_* instruction with

the result registers and the function index.
5. Encode register list instructions for the parameters.

call_indirect

1. If the instruction is unreachable, return.
2. Pop the index from the value stack.
3. Pop a number of values from the value stack equal to the number of parameters of the

function type of the instruction.
4. Allocate a register span for the results.
5. Encode a call_indirect instruction with the result registers and the type index.
6. Encode a call_indirect_params instruction with the index and the table index.
7. Encode register list instructions for the parameters.

return_call , return_call_indirect
These are tail-call versions of the respective call* instructions. The difference in translation is
that instead of call* they emit return_call* instructions with no results, and set reachability
to false after translation.

Parametric Instructions

drop

1. If the instruction is unreachable, return.
2. Otherwise, pop an element from the value stack.

select

1. If the instruction is unreachable, return.
2. Pop lhs , rhs and condition from the value stack.

109/129

3. If condition is a constant, choose the corresponding value. If it is a dynamic or
preservation register, encode a copy to a fresh dynamic register. Otherwise, just push the
register back on the value stack and return.

4. If lhs = rhs , push lhs back onto the value stack and return.
5. Otherwise, encode the corresponding select instruction based on the types and whether

the value is a register or constant.

Variable Instructions

local.get

1. If the instruction is unreachable, return.
2. Push the local register onto the value stack.

local.set

1. If the instruction is unreachable, return.

2. Pop the value from the value stack.

3. If the value is the local itself, return.

4. Preserve local register: if the local register is present on the value stack, allocate a new
preservation register, and replace all occurrences of the local on the value stack by it.

5. An optimization is possible if:

The value is not a local or preservation register;
There is a previous instruction within the current basic block.
If the local has to be preserved, then:

The previous instruction has a small encoding (i.e. max N sub-instructions for
some predefined N). Preservation and the optimization together require shifting
the encoding (see below), the restriction on size bounds the translation overhead.
And the encoding does not use the preservation register as input.

In this case:

1. Relink the output of the previous instruction to the local variable.

110/129

2. If the local has to be preserved, insert a copy instruction from local register to
preservation register (shifting the previous instruction).

6. Otherwise, if the local has to be preserved, encode a copy instruction from local register to
preservation register.

7. Then encode a copy of the value to the local.

A note on local preservation

Preserving local registers requires replacing entries of the whole value stack, thus can be a
costly operation. For small value stack sizes, Wasmi traverses the whole value stack to check
for occurrences of the given local variable. If the value stack grows beyond a certain size
however, implementation keeps track of value stack indexes for locals (LocalRefs data
structure). In the worst case, the operation is linear in value stack size even in this case.

local.tee

1. If the instruction is unreachable, return.
2. Perform the translation logic for local.set .
3. Push the value set back onto the value stack.

global.get

1. If the instruction is unreachable, return.
2. Otherwise, if the global is a constant with an initializer expression, evaluate the initializer.

If the value is a numeric constant, push that on the value stack and return.
If the value is a function reference, process it as ref.func and return.

3. Allocate a dynamic register for the result.
4. Encode a global_get instruction.

global.set

1. If the instruction is unreachable, return.
2. Pop a value from the value stack.
3. Encode a global_set* instruction, based on value.

111/129

Reference Instructions

ref.null

1. If the instruction is unreachable, return.
2. Push the null value corresponding to the reference type (function vs. external) onto the

value stack.

ref.is_null

1. If the instruction is unreachable, return.
2. Pop the value stack.
3. If the value is a const, push the constant result on the value stack.
4. Otherwise, encode an i64_eq_imm16 instruction.

ref.func

1. If the instruction is unreachable, return.
2. Allocate a register for the result.
3. Encode a ref_func instruction.

Numeric Instructions

Algorithmically, translation of numeric instractions is straightforward. In the general case,
operands are popped from the value stack, a dynamic regiter is puhed for the result, and the
Wasmi instruction corresponding to the Wasm instruction and the operand types is encoded.
However, the translation algorithm also attempts several optimizations:

Constant propagation: if all operands are constants, evaluate the instruction, and push the
result onto the value stack. Where possible, this is generalized to special cases involving
register operands, e.g. instead of encoding i32_add_imm16 x 0 , simply 0 is poushed onto
the value stack.
Peephole optimization: replace an instruction by an equivalent one. E.g. instead of
i32_sub_imm16 x 3 , instruction i32_add_imm16 x (-3) is encoded.

Op-code fusion: the instructions is combined with the previous one. As a simple example,
instead of translating to i32_and ; i32_eqz , a single i32_and_eqz instructions is

112/129

emitted.

Vector Instructions

Not supported.

Table Instructions

table.get

1. If the instruction is unreachable, return.
2. Pop the index from the value stack.
3. Allocate a new dynamic register for the result.
4. Encode a table_get* instruction corresponding to the index type (immediate / register).
5. Encode a table_idx instruction with the table index.

table.set

1. If the instruction is unreachable, return.
2. Pop the index and the value from the value stack.
3. If the value is a constant, allocate a register for it in the constant space.
4. Encode a table_set* instruction corresponding to the index type (immediate / register).
5. Encode a table_idx instruction with the table index.

table.size

1. If the instruction is unreachable, return.
2. Allocate a new dynamic register for the result.
3. Encode a table_size instruction.

table.grow

1. If the instruction is unreachable, return.
2. Pop the value and the delta from the value stack.
3. If the delta is zero, process as table.size then return.
4. If the value is a constant, allocate a register for it in the constant space.

113/129

5. Allocate a new dynamic register for the result.
6. Encode a table_grow* instruction corresponding to the delta type (immediate / register).
7. Encode a table_idx instruction with the table index.

table.fill

1. If the instruction is unreachable, return.
2. Pop the destination, value and length from the value stack.
3. If the value is a constant, allocate a register for it in the constant space.
4. Encode a table_fill* instruction corresponding to the destination and length type

(immediate / register).
5. Encode a table_idx instruction with the table index.

table.copy

1. If the instruction is unreachable, return.
2. Pop the destination, source and length from the value stack.
3. Encode a table_copy* instruction corresponding to the destination, source and length

type (immediate / register).
4. Encode a table_idx instruction with the destination table index.
5. Encode a table_idx instruction with the source table index.

table.init

1. If the instruction is unreachable, return.
2. Pop the destination, source and length from the value stack.
3. Encode a table_init* instruction corresponding to the destination, source and length

type (immediate / register).
4. Encode a table_idx instruction with the table index.
5. Encode a elem_idx instruction with the element index.

elem.drop

1. If the instruction is unreachable, return.
2. Encode an elem_drop instruction.

114/129

Memory Instructions

i<SIZE>.load(memarg) , f<SIZE>.load(memarg) ,
i<SIZE>.load<W>_<SIGNED>(memarg)

Where SIZE = 32,64 , N = 8,16,32 , SIGNED = s,u . Implemented by translate_load .

1. If the instruction is unreachable, return.
2. Read offset from instruction argument.
3. Reserve a fresh register result .
4. If the address argument on the stack is a constant:

Ensure address + offset does not overflow u32 (otherwise fail translation).
Emit I<SIZE>LoadAt , F<SIZE>LoadAt , I<SIZE>Load<W><SIGNED>At with result
register and calculated address + offset .

5. Otherwise (i.e., address argument on stack is a register reg):
If offset fits into in 16 bit:

Emit I<SIZE>LoadOffset16 , F<SIZE>LoadOffset16 ,
I<SIZE>Load<W><SIGNED>Offset16 with result , reg , and offset .

Otherwise:
Emit I<SIZE>Load , F<SIZE>Load , I<SIZE>Load<W><SIGNED> with result and
reg .

Followed by a second instruction Const32 with the offset value.

All cases use fuel cost for one load instruction.

i<SIZE>.store(memarg) , i<SIZE>.store<N>(memarg)
Where SIZE = 32,64 , N = 8,16,32 . Implemented by translate_istore .

1. If the instruction is unreachable, return.
2. Read offset from instruction argument.
3. There are four cases, depending on the nature of the top two stack elements value and

addr :
Both addr and value are registers:

If offset can fit into 16 bit:

115/129

Emit I<SIZE>StoreOffset16(addr,offset,value) ,
I<SIZE>Store<N>Offset16(addr,offset,value) .

Otherwise:
Emit I<SIZE>Store(addr,value) , I<SIZE>Store<N>(addr,value) .
Followed by a second instruction Const32 with the offset value.

addr is a register and value is a constant:
If offset fits into 16 bit:

If value fits into 16 bit:
Emit I<SIZE>StoreOffset16Imm(addr,offset,value)
(I<SIZE>Store<N>Offset16Imm(addr,offset,value)).

Otherwise:
Allocate a new function local constant for value on the value stack, use
its register valreg .
Emit I<SIZE>StoreOffset16(addr,offset,valreg)
(I<SIZE>Store<N>Offset16(addr,offset,valreg)).

Otherwise:
Allocate a new function local constant for value on the value stack, use its
register valreg .
Emit I<SIZE>Store(addr,offset) (I<SIZE>Store<N>(addr,offset)).
Followed by a second instruction Register(valreg) to supply the value
from the constant register.

addr is a constant and value is a register:
Ensure addr + offset does not overflow u32 (otherwise fail translation).
Emit I<SIZE>StoreAt(addr + offset, value)
(I<SIZE>Store<N>At(addr + offset, value)).

Both addr and value are constants:
Ensure addr + offset does not overflow u32 (otherwise fail translation).
If value fits into 16 bit:

Emit I<SIZE>StoreAtImm(addr + offset, value)
(I<SIZE>Store<N>AtImm(addr + offset, value)).

116/129

Otherwise:
Allocate a new function local constant for value on the value stack, use its
register valreg .
Emit I<SIZE>StoreAt(addr + offset, valreg)
(I<SIZE>Store<N>AtImm(addr + offset, valreg)).

All cases use fuel cost for one store instruction.

memory.size

1. If the instruction is unreachable, return.
2. Translate directly to MemorySize (using a fresh register for the result), adding fuel cost for

an entity instruction.

memory.grow

1. If the instruction is unreachable, return.
2. Translate directly to MemoryGrow[By](size) depending on size argument (using a fresh

register for the result), adding fuel cost for an entity instruction.

memory.init(data_index)

1. If the instruction is unreachable, return.
2. Translate directly to MemoryInit*(dst,src,len) (depending on arguments dst , src ,

and len), adding fuel cost for an entity instruction.
3. Emit a DataSegmentIdx instruction.

memory.copy

1. If the instruction is unreachable, return.
2. Translate directly to MemoryCopy*(dst,src,len) (depending on arguments dst , src ,

and len), adding fuel cost for an entity instruction.

memory.fill

1. If the instruction is unreachable, return.

117/129

2. Translate directly to MemoryFill*(dst,val,len) (depending on arguments dst , val ,
and len), adding fuel cost for an entity instruction.

data.drop(data_index)

1. If the instruction is unreachable, return.
2. Translate directly to DataDrop(data_index) , adding fuel cost for an entity instruction.

118/129

Appendix: unsafe Rust Checklist
There are 112 usages of the unsafe keyword in wasmi v0.36.0 that are in scope of the audit.
Below is a table that categorizes and analyses each occurrence. But first some definitions and
context are required.

The unsafe code in Wasmi often involves the management of raw pointers. Raw pointers
themselves are not inherently unsafe, and so long as they are valid, aligned correctly, and
handled correctly according to the specific safety comments then no undefined behaviour will
occur.

Validity
Validity of a pointer is best described in the the Rust documentation for
rust/library/core/src/ptr/mod.rs:

For operations of size zero, every pointer is valid, including the null pointer.

The following points are only concerned with non-zero-sized accesses.

A null pointer is never valid.
For a pointer to be valid, it is necessary, but not always sufficient, that the pointer be
dereferenceable: the memory range of the given size starting at the pointer must all be
within the bounds of a single allocated object. Note that in Rust, every (stack-
allocated) variable is considered a separate allocated object.
All accesses performed by functions in this module are non-atomic in the sense of
atomic operations used to synchronize between threads. This means it is undefined
behavior to perform two concurrent accesses to the same location from different
threads unless both accesses only read from memory. Notice that this explicitly
includes read_volatile and write_volatile: Volatile accesses cannot be used for inter-
thread synchronization.
The result of casting a reference to a pointer is valid for as long as the underlying
object is live and no reference (just raw pointers) is used to access the same memory.
That is, reference and pointer accesses cannot be interleaved.

119/129

https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/ptr/fn.read_volatile.html
https://doc.rust-lang.org/std/ptr/fn.write_volatile.html

Alignment
Alignment of a pointer is best described in the rust documentation for
rust/library/core/src/ptr/mod.rs:

Valid raw pointers as defined above are not necessarily properly aligned (where “proper”
alignment is defined by the pointee type, i.e., *const T must be aligned to mem::align_of::
()). However, most functions require their arguments to be properly aligned, and will
explicitly state this requirement in their documentation. Notable exceptions to this are
read_unaligned and write_unaligned.

When a function requires proper alignment, it does so even if the access has size 0, i.e.,
even if memory is not actually touched.

Allocated Object
Above a pointer is described as being valid if the address is part of a memory range that is
considered an "allocated object". Allocated Objects are best described in the rust documentation
for rust/library/core/src/ptr/mod.rs:

An allocated object is a subset of program memory which is addressable from Rust, and
within which pointer arithmetic is possible. Examples of allocated objects include heap
allocations, stack-allocated variables, statics, and consts. The safety preconditions of some
Rust operations - such as offset and field projections (expr.field) - are defined in terms of
the allocated objects on which they operate.

An allocated object has a base address, a size, and a set of memory addresses. It is
possible for an allocated object to have zero size, but such an allocated object will still
have a base address. The base address of an allocated object is not necessarily unique.
While it is currently the case that an allocated object always has a set of memory
addresses which is fully contiguous (i.e., has no “holes”), there is no guarantee that this will
not change in the future.

Undefined Behaviour
Undefined Behaviour (UB) in Rust is any code that exhibits behaviours defined in The Rust
Reference chapter 16.2 Behavior considered undefined. Any code that triggers UB is

120/129

https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/std/ptr/fn.read_unaligned.html
https://doc.rust-lang.org/std/ptr/fn.write_unaligned.html
https://github.com/rust-lang/rust/blob/4203c686136428ab10e2765a00886b7c2909a477/library/core/src/ptr/mod.rs#L5-L44
https://doc.rust-lang.org/reference/behavior-considered-undefined.html#behavior-considered-undefined

considered unsound. Safe code cannot trigger UB and so is automatically sound, while unsafe
code is considered sound only if it cannot trigger UB.

Unsafe Rust Features
Unsafe Rust allows 5 features that safe rust does not have. Here is a legend to classify them,
and another item for declaration, that will be used to categorise the type of unsafe in the
analysis.

LEGEND:
DEREF - Dereference a raw pointer
CALL - Call an unsafe function or method
DECL - Declaration of an unsafe function or method
STATIC - Access or modify a mutable static variable
TRAIT - Implement an unsafe trait
UNION - Access fields of a union

121/129

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers

Source Type Precondition Notes

ExternRef::From#L125 UNION
u64 bit pattern must be valid as
ExternRef

size checked to be equal, contains
u32 (always valid) and non-zero
u32 (ExternObject type), None

for zero ("niche" value [^1][^2]).

UntypedValue::From#L137 UNION
ExternRef bit pattern must be a

valid u64 any bit patterns is valid

Externref::canonicalize#L168 UNION 0_u64 must be a valid ExternRef is valid (encoding a wrapped None)
[^1]

/wasmi/src/memory/buffer.rs#L37 TRAIT Send for ByteBuffer type Pointer can be shared, rest is Send

ByteBuffer::data#L140 CALL slice::from_raw_parts ByteBuffer fields (ptr , len)
consistent by construction

ByteBuffer::data_mut#L149 CALL slice::from_raw_parts ByteBuffer fields (ptr , len)
consistent by construction

ByteBuffer::get_vec#L167 CALL Vec::from_raw_parts
ByteBuffer fields (ptr , len ,
capacity) consistent by

construction

/wasmi/src/memory/buffer.rs#L203 DEREF
dereferences a raw pointer
(core::ptr::addr_of_mut!) for
test

Test code only

/wasmi/src/memory/buffer.rs#L209 DEREF dereferences a static mut Test code only

/wasmi/src/memory/buffer.rs#L225 DEREF
dereferences a raw pointer
(core::ptr::addr_of_mut!) for
test

Test code only

/wasmi/src/memory/buffer.rs#L241 DEREF
dereferences a raw pointer
(core::ptr::addr_of_mut!) for
test

Test code only

/wasmi/src/engine/resumable.rs#L1
09 TRAIT X

Safe since InstructionPtr safely
implements Sync . More
explanation in Safety comment

CodeMap::get_compiled#L297 CALL Must be unreachable.
Reliant on guarantees from
translator. See
hint::unreachable_unchecked

CodeMap::adjust_cref_lifetime#L33
0 CALL Data must not be moved or

invalidated.

CompiledFuncRef only has
reference to Pin data. No unsafe
Pin methods are called and the

data does not have interior
mutability. As Safety comment
mentions CodeMap is append only.
See intrinsics.rs::transmute

CodeMap::get_uncompiled#L473 CALL Must be unreachable. unreachable by construction. See
hint::unreachable_unchecked

CodeMap::compile#L627 CALL memory must be initialised

Saftey comment needs to be added.
Memory is initialised due to
result.write called on both paths

of match statement. See
MaybeUninit::assume_init

Stack::merge_call_frames#L81 DECL
No FrameRegisters can reference
the drained CallFrame , these
pointers will be invalid.

Validity must be handled at call site.
Not strictly required as no unsafe
directly appears in the body,
perhaps ValueStack::Drain
should be unsafe although it does
not call unsafe code directly either.

ValueStack::stack_ptr_at#L117 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

No checks, DECL unsafe so must
be enforced at call site. All call sites
provide argument of
CallFrame::base_offset() , so

soundness is dependent on
CallSack data. See <*mut T>::add

122/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L137
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L137
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/externref.rs#L168
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L37
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L140
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L149
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L167
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L203
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L209
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L225
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/memory/buffer.rs#L241
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/resumable.rs#L109
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/resumable.rs#L109
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L297
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/hint.rs#L9-L110
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L330
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L330
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/intrinsics.rs#L1092-L1382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L473
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/hint.rs#L9-L110
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/code_map.rs#L627
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/mem/maybe_uninit.rs#L583-L640
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/mod.rs#L81
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L117
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mut_ptr.rs#L921-L1006

Source Type Precondition Notes

ValueStack::extend_by#L150 CALL

new_len must be less than
capacity. Elements at
old_len..new_len must be

initialised.

Defaults for capacity are sound,
although it is possible config with
bad capacity, it should error in call
to reserve . new_len is within
range of capacity as reserve is
called. All calls have on_resize
either do_nothing or shift the
stack pointer. Values are not
initialised in this function, instead a
slice of MaybeUninit is returned,
this has appropriate handling of
uninit values and no UB should be
possible. See Vec::set_len

ValueStack::extend_by#L151 CALL

The slice data must be valid for
reads and writes. The data must be
initialised. Access to data must be
exclusive to slice for lifetime of slice.
len * size_of::() cannot overflow
isize.

The slice data is valid as the line
above ensures it is within vec
capacity. Slice data is not initialised
and is MaybeUninit , and so call
site should enforce correctness as
mentioned above. Not clear access
is exclusive at this point, however
the only possible accesses that
would violate this would be raw
pointers. Not clear that size could
not overflow, extra checks should
be added to ensure. Note: All calls
have on_resize either
do_nothing or shift the stack

pointer. See
slice::from_raw_parts_mut

ValueStack::drop#L177 CALL

new_len must be less than
capacity. Elements at
old_len..new_len must be

initialised.

new_len is in range. Assuming
values were already initialised,
shortening the length is valid - other
unsafe functions responsibility
ensure they are initialised. See
Vec::set_len

ValueStack::drop_return#L188 CALL index must be in bounds of slice
This appears to be able to be
violated, a check should be added
here. See slice::get_unchecked

ValueStack::drop_return#L190 CALL

The slice data must be valid for
reads. The data must be initialised.
Access to data must be read only
for other references to slice for
lifetime of slice. len * size_of::()
cannot overflow isize.

If the check from above is included
then the validity and initialisation
should be sound. Not clear if there
is other access and is shared read
only, these would need to occur
through raw pointers though. Not
clear that size could not overflow,
extra checks should be added to
ensure. See slice::from_raw_parts

ValueStack::truncate#L203 CALL

new_len must be less than
capacity. Elements at
old_len..new_len must be

initialised.

new_len is in range. Assuming
values were already initialised,
shortening the length is valid - other
unsafe functions responsibility
ensure they are initialised. See
Vec::set_len

FrameParams::init_next#L368 CALL

ptr::write :
FrameParams.range.start must

be valid for writes, and must be
properly aligned. <*mut T>::add :
Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

ptr::write : Validity and alignment
must be established by calling
context, function is declared unsafe.
<*mut T>::add : Offset in bytes

cannot overflow isize as count is 1.
If
FrameParams.range.end <= FramePar

is already the case, offset may point
to a different allocated object or
wrap, since function is declared
unsafe this is the responsibility of
calling context to enforce. See
ptr::write. See <*mut T>::add

123/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L150
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L151
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/raw.rs#L142-L195
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L177
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L188
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/mod.rs#L635-L673
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L190
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/core/src/slice/raw.rs#L6-L140
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L203
https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/library/alloc/src/vec/mod.rs#L1797-L1884
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L368
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mut_ptr.rs#L921-L1006

Source Type Precondition Notes

FrameParams::init_zeroes#L378 CALL

ptr::write :
FrameParams.range.start must

be valid for writes, and must be
properly aligned. <*mut T>::add :
Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

ptr::write : Pointer alignment and
validity not explicitly enforced in
funciton, but all call sites follow
ValueStack::alloc_call_frame

which is a valid context. <*mut
T>::add: Offset in bytes cannot
overflow isize as count is 1.
debug_assert and calling context

enforce these predicates, but the
debug_assert could be added to

extra checks. See
FrameParams::init_next

FrameRegisters::get#L409 CALL

ptr::read : src must point to
initialised memory. src must be
valid for read. src must be
aligned.
FrameRegisters::register_offset

:
count * size_of::<UntypedVal>()

must not overflow isize . Original
pointer and offset pointer must be
part of same allocated object
without wrapping.

All ptr::read invariants
(initialised, valid, aligned) are
dependent on
FrameRegisters::register_offset

invariants being upheld, which
(since the function is declared
unsafe) must be determined by call
site (only
Executor::get_register). See

ptr::read. See
FrameRegisters::register_offset

FrameRegisters::set#L419 CALL

ptr::write : dst must be valid
for writes. dst must be aligned.
FrameRegisters::register_offset

:
count * size_of::<UntypedVal>()

must not overflow isize . Original
pointer and offset pointer must be
part of same allocated object
without wrapping.

All ptr::write invariants (valid,
aligned) are dependent on
FrameRegisters::register_offset

invariants being upheld, which
(since funtion is declared unsafe)
must be determined by call site.
See ptr::write. See
FrameRegisters::register_offset

FrameRegisters::register_offset#L4
24 DECL X X

FrameRegisters::register_offset#L4
25 CALL

count * size_of::<UntypedVal>()
must not overflow isize . Original
pointer and offset pointer must be
part of same allocated object
without wrapping.

By [C5] analysis, and given that
count is converted i16, count

maximum possible is i16::MAX
which will not overflow for 32bit and
larger wordsize. If wordsize is 16bit,
then the count <= 4095 for
soundness. Unclear that the offset
would be part of same allocated
object without wrapping, since
funciton is marked unsafe this
would need to determined by call
site `FrameRegisters::{get

CachedInstance::as_ref#L80 DECL X X

CachedInstance::as_ref#L81 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
NonNull<T>::as_ref

CachedInstance::update_memory#
L101 DECL X X

CachedInstance::update_memory#
L102 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_func#L115 DECL X X

CachedInstance::get_func#L116 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_memory#L12
6 DECL X X

CachedInstance::get_memory#L12
7 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_table#L137 DECL X X

124/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L378
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L409
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1286-L1436
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L419
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L424
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L424
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/stack/values.rs#L425
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L80
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L81
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/non_null.rs#L332-L367
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L101
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L101
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L102
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L102
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L115
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L116
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L126
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L126
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L127
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L127
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L137

Source Type Precondition Notes

CachedInstance::get_table#L138 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_global#L148 DECL X X

CachedInstance::get_global#L149 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_data_segment
#L159 DECL X X

CachedInstance::get_data_segment
#L160 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_element_seg
ment#L170 DECL X X

CachedInstance::get_element_seg
ment#L171 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
CachedInstance::as_ref#81

CachedInstance::get_func_type_de
dup#L181 DECL X X

CachedInstance::get_func_type_de
dup#L182 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe.

CachedMemory::data#L233 DECL X X

CachedMemory::data#L234 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe. See
NonNull<T>::as_ref

CachedMemory::data_mut#L243 DECL X X

CachedMemory::data_mut#L244 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
function is declared unsafe.

CachedGlobal::get#L306 DECL X X

CachedGlobal::get#L309 CALL
src must point to initialised

memory. src must be valid for
read. src must be aligned.

Must be established at call site,
function is declared unsafe. See
ptr::read

CachedGlobal::set#L318 DECL X X

CachedGlobal::set#L321 CALL dst must be valid for writes. dst`
must be aligned.

Must be established at call site,
function is declared unsafe. See
ptr::write

EngineExecutor::execute_root_func
#L211 CALL

ptr::write :
FrameParams.range.start must

be valid for writes, and must be
properly aligned. <*mut T>::add :
Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

ptr::write : The access is
properly aligned and is valid for
writes, but it should be noted if there
are constants allocated in the frame
they are overwritten. <*mut T>::add:
Offset in bytes cannot overflow isize
as count is 1. Previous call to
ValueStack::alloc_call_frame

ensures valid range, therefore offset
is in same allocated object without
wrapping. See
FrameParams::init_next

EngineExecutor::resume_func#L27
2 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. See
ValueStack::stack_ptr_at

EngineExecutor::resume_func#L27
6 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

125/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L138
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L148
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L149
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L159
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L159
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L160
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L160
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L170
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L170
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L171
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L171
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L181
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L181
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L182
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L182
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L233
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L234
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/non_null.rs#L332-L367
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L243
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L244
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L306
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L309
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1286-L1436
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L318
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/cache.rs#L321
https://github.com/rust-lang/rust/blob/df1b5d3cc2117f1ee96abca25678bc5f5604d450/library/core/src/ptr/mod.rs#L1533-L1641
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L211
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L211
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L276
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/mod.rs#L276

Source Type Precondition Notes

Executor::new#L119 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. See
ValueStack::stack_ptr_at

Executor::get_entity!#L882 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Transitively calls
CachedEntity::get_* . Unclear

that invariants would hold, must be
established at call site, expanded
functions are not labelled as unsafe,
so extra checks are recommended.
See CachedInstance::as_ref

Executor::get_register#L923 CALL

From
FrameRegisters::register_offset

:
count * size_of::<UntypedVal>()

must not overflow isize . Original
pointer and offset pointer must be
part of same allocated object
without wrapping.

Unclear that these invariants hold,
and it depends on the callsite of
which there are many. This funciton
should be declared as unsafe or
there should be extra checks
enabled. See FrameRegisters::get

Executor::set_register#L941 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
and it depends on the callsite of
which there are many. This function
should be declared as unsafe or
there shoul dbe extra checks
enabled. See FrameRegisters::set

Executor::frame_stack_ptr_impl#L9
93 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. See
ValueStack::stack_ptr_at

Executor::execute_load_extend#L3
9 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Must be established at call site,
however it the function isn't marked
as unsafe, extra checks should be
added to ensure the invariants are
upheld.

Executor::dispatch_compiled_func#
L224 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. Part of a
closure. See
ValueStack::stack_ptr_at

Executor::copy_regs#L272 CALL

ptr::write :
FrameParams.range.start must

be valid for writes, and must be
properly aligned. <*mut T>::add :
Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Executor::copy_regs soundness
depends on call site, which is
always the call site of
Executor::copy_call_params

which takes
uninit_params:FrameParams as

argument. In particular is the
responsibility of the call site to
allocate enough range for all calls
Executor::copy_reg to be sound.

Two calls to
Executor::copy_call_params

exist, one preceeded by
ValueStack::extend_by , the other

by
ValueStack::alloc_call_frame , it

is not clear that these allocate
enough range and extra checks
should be added. ptr::write :
<*mut T>::add : See

FrameParams::init_next

Executor::prepare_compiled_func_c
all#L317 CALL

No FrameRegisters can reference
the drained CallFrame , these
pointers will be invalid.

Not clear that the CallFrame on
the head of the stack cannot have
dangling pointers to it. This would
depend on the context of the call
site, if possible extra checks should
be added. See
Stack::merge_call_frames

126/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L119
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L882
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L923
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L941
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L993
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs.rs#L993
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/load.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/load.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L224
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L224
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L272
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L317
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L317

Source Type Precondition Notes

Executor::execute_host_func#L508 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. See
ValueStack::stack_ptr_at

Executor::execute_host_func#L534 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

Executor::return_caller_results#L77 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

Dependent on validity of
CallFrame.base_offset , extra

checks are recommended. See
ValueStack::stack_ptr_at

Executor::execute_return_value#L1
07 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

Executor::execute_return_reg_n_im
pl#L152 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

Executor::execute_return_span#L2
02 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

Executor::execut_return_many_impl
#L232 CALL

From
FrameRegisters::register_offset

: count * size_of::
() must not overflow isize`.
Original pointer and offset pointer
must be part of same allocated
object without wrapping.

Unclear that these invariants hold,
requires extra checks. See
FrameRegisters::set

Executor::execute_global_get#L16 CALL
src must point to initialised

memory. src must be valid for
read. src must be aligned.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedGlobal::get

Executor::execute_global_set_impl#
L72 CALL dst must be valid for writes. dst`

must be aligned.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedGlobal::set

Executor::execute_store_wrap#L55 CALL
Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedMemory::data_mut

Executor::execute_memory_grow_i
mpl#L90 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Unclear that these invariants hold, it
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedInstance::update_memory

127/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L508
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/call.rs#L534
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L77
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L107
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L107
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L152
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L152
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L202
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L202
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L232
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/return_.rs#L232
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L72
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/global.rs#L72
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/store.rs#L55
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L90
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L90

Source Type Precondition Notes

Executor::execute_memory_copy_i
mpl#L234 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedMemory::data_mut

Executor::execute_memory_fill_impl
#L381 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedMemory::data_mut

Executor::execute_memory_init_im
pl#L530 CALL

Pointer must be aligned. Must be
"dereferenceable". Referent must
be initialised.

Unclear that these invariants hold,
must be established at call site
however function is not declared
unsafe. Extra checks are
recommended. See
CachedMemory::data_mut

/wasmi/src/engine/bytecode/instr_pt
r.rs#L18 TRAIT X Read only on Send data

InstructionPtr::offset#L39 CALL ptr always in bounds and ptr + offset
<= i32::MAX

Safety comment does not mention
potential to wrap i32, debug_assert
can be added to enforce bound.
See <*const T>::offset

InstructionPtr::add#L47 CALL

Starting pointer and ending pointer
must be part of same allocated
object. Offset in bytes cannot
overflow isize. Computing offset
cannot involve wrapping.

As above. See <*const T>::add

InstructionPtr::get#L62 DEREF X Safety comment asserts deref
should be safe.

/wasmi/src/engine/bytecode/immedi
ate.rs#L130 CALL Value must be non-zero

Correct by PhantomData containing
non-zero type. See
NonZero::new_unchecked

/wasmi/src/engine/bytecode/immedi
ate.rs#L138 CALL Value must be non-zero

Correct by PhantomData containing
non-zero type. See
NonZero::new_unchecked

/wasmi/src/engine/bytecode/immedi
ate.rs#L146 CALL Value must be non-zero

Correct by PhantomData containing
non-zero type. See
NonZero::new_unchecked

/wasmi/src/engine/bytecode/immedi
ate.rs#L154 CALL Value must be non-zero

Correct by PhantomData containing
non-zero type. See
NonZero::new_unchecked

Module::new_unchecked#L256 DECL input bytecode must be valid and
consistent with config

only used for benchmark tests, see
benches.rs

Module::new_unchecked#L258 CALL see parse_buffered_unchecked

Module::new_streaming_unchecked
#L281 DECL input bytecode stream must be valid

and consistent with config never called within codebase

Module::new_streaming_unchecked
#L286 CALL see parse_streaming_unchecked

CustomSectionsIter::next#L125 CALL str::from_utf8_unchecked (Safety comment) read bytes
constructed from a string before

Module::parse_streaming#L79 CALL see Module::parse_streaming_impl,
validator provided before call

Module::parse_streaming_uncheck
ed DECL input bytecode stream must be valid

and consistent with config

Module::parse_streaming_uncheck
ed#L95 CALL see Module::parse_streaming_impl

Module::parse_streaming_impl DECL
either input bytecode stream is
valid/consistent with config, or
validator is provided

Module::parse_buffered#L24 CALL see Module::parse_buffered_impl,
validator provided before call

128/129

https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L234
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L234
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L381
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L381
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L530
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/executor/instrs/memory.rs#L530
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L18
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L18
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L39
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/ptr/const_ptr.rs#L349-L430
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L47
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/ptr/const_ptr.rs#L837-L922
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/instr_ptr.rs#L62
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L130
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L130
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L138
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L138
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L146
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L146
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L154
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/engine/bytecode/immediate.rs#L154
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/rust-lang/rust/blob/8d94e06ec9758b5c03ea77bb5dab22a1a76bc261/library/core/src/num/nonzero.rs#L357-L382
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L257
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/benches/benches.rs
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L259
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L282
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L282
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L287
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/mod.rs#L287
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/custom_section.rs#L125
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L79
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L94
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L94
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L95
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L95
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/streaming.rs#L114
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L24

[^1] https://github.com/rust-lang/rust/pull/60300
[^2] https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche

Source Type Precondition Notes

Module::parse_buffered_unchecked DECL input bytecode must be valid and
consistent with config

Module::parse_buffered_unchecked
#L40 CALL see Module::parse_buffered_impl

Module::parse_buffered_impl DECL
either input bytecode is
valid/consistent with config, or
validator is provided

FuncRef::From#L43 UNION u64 bit pattern must be valid as
RefType

size checked to be equal, contains
u32 (always valid) and non-zero
u32 (Func type), None for zero

("niche" value [^1][^2]).

UntypedVal::From#L55 UNION
FuncRef bit pattern must be a valid
u64 any bit patterns is valid

FuncRef::canonicalize#L78 UNION 0_u64 must be a valid FuncRef is valid (encoding a wrapped None)
[^1]

LenOrderStr::From#L172 CALL transmute s a str to wrapper
struct

wrapper struct declared
repr(transparent)

/collections/src/arena/mod.rs#L38 TRAIT Send for Arena allocation data Safe if contained T is Send

/collections/src/arena/mod.rs#L41 TRAIT Sync for Arena allocation data
Safe if contained T is Sync . It is
however declared Send instead
(reported).

/collections/src/arena/component_v
ec.rs#L16 TRAIT Send for ComponentVec vector

type Safe if contained T is Sync

/collections/src/arena/component_v
ec.rs#L19 TRAIT Sync for ComponentVec vector

type Safe if contained T is Sync

/wasmi/benches/benches.rs#L189 CALL bytecode input must be valid and
consistent with config

only called on known bytecode in
repository

129/129

https://github.com/rust-lang/rust/pull/60300
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L40
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L40
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/module/parser/buffered.rs#L59
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L44
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L44
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L56
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L56
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/src/func/funcref.rs#L79
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/string_interner/detail.rs#L172
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/string_interner/detail.rs#L172
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L39
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/mod.rs#L42
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L16
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L19
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/collections/src/arena/component_vec.rs#L19
https://github.com/wasmi-labs/wasmi/tree/02621ad7a7f769dc97524075a693cc96e2049cb5/crates/wasmi/benches/benches.rs#L190

